Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

The flames from wildfires aren’t always the most dangerous part

News Feed
Friday, January 10, 2025

The spate of devastating fires hitting the Los Angeles area has dominated headlines and understandably so. At least 10 people have died and upwards of 180,000 people have been evacuated with more than 10,000 structures destroyed. One of these fires, the Palisades Fire, began burning on Tuesday and continues at the time of this writing, has destroyed at least 17,000 acres, the most in Los Angeles history. But there's also the Eaton Fire, the Hurst Fire, the Kenneth Fire and other fires in the area, many with little to no containment. While hundreds of thousands of Californians are fleeing from flames, there are other risks aside from the immediate damage: air pollution and the charred toxins that are left behind.  To give one example, a recent study in the journal JAMA Neurology has looked at the effects of wildfire smoke on  dementia. Previous research has established that tiny particles in the air (2.5 micrometers or less in diameter, known as PM2.5) are linked to dementia, but the researchers found that long-term exposure to wildfire smoke specifically “was associated with dementia diagnoses.” They added that as climate change worsens, “interventions focused on reducing wildfire PM2.5 exposure may reduce dementia diagnoses and related inequities.” To conduct their research, the scientists looked at health data from more than 1.2 million people from between 2008 and 2019 among members of Kaiser Permanente Southern California. Within this cohort, they discovered “people with higher exposure to wildfire fine particulate matter (PM2.5) had elevated risk of developing dementia,” explained Dr. Joan Casey, the study’s corresponding author and a professor of public health at the University of Washington. Because this study only examined existing patient data, Casey told Salon that scientists will need to do more research on the precise relationship between wildfire exposure and dementia. “We looked at the umbrella of all dementia diagnoses, but certain sub-types like Alzheimer’s or frontotemporal dementia might have stronger links with wildfire PM2.5,” Casey said. “We also want to understand the relevant time window of exposure. Here, we looked at exposure in the prior three years, but a longer window is likely important (up to 20 years.)” "As temperatures and humidity increase, conditions such as stroke, migraines, meningitis, epilepsy, multiple sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease may worsen." The researchers’ work is unfortunately relevant to human beings because climate change is making wildfires more frequent and more intense. From California and Hawaii to Greece and Spain, more and more of Earth’s wooded areas are bursting into flame as humanity overheats the planet with heat-trapping fossil fuel emissions. While these conflagrations engulf millions of acres of lands, they belch fine particulate matter into the air, which humans inevitably inhale. But more and more research is making it clear how devastating to our health this toxic air can be. Although this study focuses specifically on wildfire PM2.5, other research firmly establishes that PM2.5 in general is bad for human health. A report from the National Bureau of Economic Research released last April found that wildfire smoke contributes to the deaths of around 16,000 Americans per year, with that number expected to rise to 30,000 by mid century. A systematic review published in the journal Neurotoxicology found a link between air pollution and increased depressive and anxiety symptoms and behaviors, as well as physical alterations in brain regions believed to be associated with those conditions. A 2024 study in the journal Ecotoxicology and Environmental Safety likewise found links between various types of common air pollution and diseases including PTSD and multiple sclerosis, while a 2021 study in the journal Neurology found a link between urban air pollution and central nervous system diseases. Want more health and science stories in your inbox? Subscribe to Salon's weekly newsletter Lab Notes. "The results of our studies on the effects of nanoparticles in the air show a link between exposure to air pollutants and neurological diseases and neuropsychiatric disorders," 2021 study lead author Mojtaba Ehsanifar, an assistant professor of environmental neurotoxicology at Kashan University of Medical Sciences' Anatomical Sciences Research Center, told Salon by email. Although Ehsanifar has not specifically worked on the effects of pollutants from fires, he noted that pollutants produced by both gases tend to be similar. He blames climate change for this problem. “A recent investigation establishes a connection between climate change and the exacerbation of certain neurological disorders,” Ehsanifar said. “As temperatures and humidity increase, conditions such as stroke, migraines, meningitis, epilepsy, multiple sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease may worsen.” He added that as temperatures continue to rise, the heat will combine with the smoke to hurt our brains. "This is yet another example of the profound, yet grossly understated negative health consequences of human-caused climate change." “Currently, brains are already operating toward the upper thresholds of these ranges, and as climate change elevates temperature and humidity, our brains might struggle to maintain temperature regulation, even malfunctioning,” Ehsanifar said. “A high internal body temperature, especially above 104 degrees Fahrenheit, with cognitive impairment such as confusion, defines heat stroke.” This research underscores how global heating is intrinsically linked to our health. University of Pennsylvania climate scientist Dr. Michael E. Mann said it is fair to directly attribute diseases like dementia to climate change when they are demonstrably caused by wildfire exposure. “The connection is epidemiological, much like the negative health consequences of smoking are epidemiological, i.e. statistical in nature,” Mann said. “So in other words, while it’s always possible that a victim could have suffered neurological diseases for other reasons, we can say that exposure to wildfire smoke substantially increases the likelihood of e.g. developing dementia, enough so that there is effectively a causal connection there.” Mann added, “This is yet another example of the profound, yet grossly understated negative health consequences of human-caused climate change.” Dr. Kevin Trenberth, a distinguished scholar at the National Center for Atmospheric Research, told Salon that he is not surprised the study found adverse effects of wildfire pollution. The revelation that PM2.5 may indirectly increase dementia risk, however, was new to him. “But there is no question that air pollution is bad for health in many ways,” Trenberth said. “On bad pollution days, either one should not exercise or should do it indoors. So this affects exercise, which should help health. With wildfires around, one should not breathe the foul air. So this can be partially controlled from industry although mainly for larger particles. It is harder to see the smaller particles.” Nor are humans alone in suffering, Trenberth noted. “Think of all the poor animals exposed.” Scientists writing in 2022 for the journal Environmental Research described air pollution broadly as an underrecognized public health risk, arguing that “policy needs to be matched by scientific evidence and appropriate guidelines, including bespoke strategies to optimise impact and mitigate unintended consequences.” In addition to mitigating the impacts of climate change, experts urge ordinary citizens to take measures to protect their lungs during times of intense air pollution. Whether it is caused by wildfires, urban smog or any other source, the overwhelming evidence is that breathing it in is bad for a person’s respiratory health. What remains after a wildfire can also be dangerous. The charred ruins of houses and burnt out cars contain countless pollutants from melted plastics, paints, electronics and household waste. Until the environment is adequately cleaned up, the likelihood is that those who struggle with disease because of exposure to wildfires both during and after may continue to risk their health. “Seeing the magnitude of the relationship between wildfire PM2.5 and dementia was quite striking,” Casey said. “I was especially struck by how much stronger this relationship was for people living in communities with higher levels of poverty, suggesting that climate change is again increasing health disparities.” Read more about climate change

Climate change is making wildfires more common and more severe. The pollution is killing us

The spate of devastating fires hitting the Los Angeles area has dominated headlines and understandably so. At least 10 people have died and upwards of 180,000 people have been evacuated with more than 10,000 structures destroyed. One of these fires, the Palisades Fire, began burning on Tuesday and continues at the time of this writing, has destroyed at least 17,000 acres, the most in Los Angeles history. But there's also the Eaton Fire, the Hurst Fire, the Kenneth Fire and other fires in the area, many with little to no containment.

While hundreds of thousands of Californians are fleeing from flames, there are other risks aside from the immediate damage: air pollution and the charred toxins that are left behind. 

To give one example, a recent study in the journal JAMA Neurology has looked at the effects of wildfire smoke on  dementia. Previous research has established that tiny particles in the air (2.5 micrometers or less in diameter, known as PM2.5) are linked to dementia, but the researchers found that long-term exposure to wildfire smoke specifically “was associated with dementia diagnoses.” They added that as climate change worsens, “interventions focused on reducing wildfire PM2.5 exposure may reduce dementia diagnoses and related inequities.”

To conduct their research, the scientists looked at health data from more than 1.2 million people from between 2008 and 2019 among members of Kaiser Permanente Southern California. Within this cohort, they discovered “people with higher exposure to wildfire fine particulate matter (PM2.5) had elevated risk of developing dementia,” explained Dr. Joan Casey, the study’s corresponding author and a professor of public health at the University of Washington.

Because this study only examined existing patient data, Casey told Salon that scientists will need to do more research on the precise relationship between wildfire exposure and dementia. “We looked at the umbrella of all dementia diagnoses, but certain sub-types like Alzheimer’s or frontotemporal dementia might have stronger links with wildfire PM2.5,” Casey said. “We also want to understand the relevant time window of exposure. Here, we looked at exposure in the prior three years, but a longer window is likely important (up to 20 years.)”

"As temperatures and humidity increase, conditions such as stroke, migraines, meningitis, epilepsy, multiple sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease may worsen."

The researchers’ work is unfortunately relevant to human beings because climate change is making wildfires more frequent and more intense. From California and Hawaii to Greece and Spain, more and more of Earth’s wooded areas are bursting into flame as humanity overheats the planet with heat-trapping fossil fuel emissions. While these conflagrations engulf millions of acres of lands, they belch fine particulate matter into the air, which humans inevitably inhale. But more and more research is making it clear how devastating to our health this toxic air can be.

Although this study focuses specifically on wildfire PM2.5, other research firmly establishes that PM2.5 in general is bad for human health. A report from the National Bureau of Economic Research released last April found that wildfire smoke contributes to the deaths of around 16,000 Americans per year, with that number expected to rise to 30,000 by mid century. A systematic review published in the journal Neurotoxicology found a link between air pollution and increased depressive and anxiety symptoms and behaviors, as well as physical alterations in brain regions believed to be associated with those conditions. A 2024 study in the journal Ecotoxicology and Environmental Safety likewise found links between various types of common air pollution and diseases including PTSD and multiple sclerosis, while a 2021 study in the journal Neurology found a link between urban air pollution and central nervous system diseases.


Want more health and science stories in your inbox? Subscribe to Salon's weekly newsletter Lab Notes.


"The results of our studies on the effects of nanoparticles in the air show a link between exposure to air pollutants and neurological diseases and neuropsychiatric disorders," 2021 study lead author Mojtaba Ehsanifar, an assistant professor of environmental neurotoxicology at Kashan University of Medical Sciences' Anatomical Sciences Research Center, told Salon by email. Although Ehsanifar has not specifically worked on the effects of pollutants from fires, he noted that pollutants produced by both gases tend to be similar. He blames climate change for this problem.

“A recent investigation establishes a connection between climate change and the exacerbation of certain neurological disorders,” Ehsanifar said. “As temperatures and humidity increase, conditions such as stroke, migraines, meningitis, epilepsy, multiple sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease may worsen.”

He added that as temperatures continue to rise, the heat will combine with the smoke to hurt our brains.

"This is yet another example of the profound, yet grossly understated negative health consequences of human-caused climate change."

“Currently, brains are already operating toward the upper thresholds of these ranges, and as climate change elevates temperature and humidity, our brains might struggle to maintain temperature regulation, even malfunctioning,” Ehsanifar said. “A high internal body temperature, especially above 104 degrees Fahrenheit, with cognitive impairment such as confusion, defines heat stroke.”

This research underscores how global heating is intrinsically linked to our health.

University of Pennsylvania climate scientist Dr. Michael E. Mann said it is fair to directly attribute diseases like dementia to climate change when they are demonstrably caused by wildfire exposure.

“The connection is epidemiological, much like the negative health consequences of smoking are epidemiological, i.e. statistical in nature,” Mann said. “So in other words, while it’s always possible that a victim could have suffered neurological diseases for other reasons, we can say that exposure to wildfire smoke substantially increases the likelihood of e.g. developing dementia, enough so that there is effectively a causal connection there.”

Mann added, “This is yet another example of the profound, yet grossly understated negative health consequences of human-caused climate change.”

Dr. Kevin Trenberth, a distinguished scholar at the National Center for Atmospheric Research, told Salon that he is not surprised the study found adverse effects of wildfire pollution. The revelation that PM2.5 may indirectly increase dementia risk, however, was new to him.

“But there is no question that air pollution is bad for health in many ways,” Trenberth said. “On bad pollution days, either one should not exercise or should do it indoors. So this affects exercise, which should help health. With wildfires around, one should not breathe the foul air. So this can be partially controlled from industry although mainly for larger particles. It is harder to see the smaller particles.”

Nor are humans alone in suffering, Trenberth noted. “Think of all the poor animals exposed.”

Scientists writing in 2022 for the journal Environmental Research described air pollution broadly as an underrecognized public health risk, arguing that “policy needs to be matched by scientific evidence and appropriate guidelines, including bespoke strategies to optimise impact and mitigate unintended consequences.” In addition to mitigating the impacts of climate change, experts urge ordinary citizens to take measures to protect their lungs during times of intense air pollution. Whether it is caused by wildfires, urban smog or any other source, the overwhelming evidence is that breathing it in is bad for a person’s respiratory health.

What remains after a wildfire can also be dangerous. The charred ruins of houses and burnt out cars contain countless pollutants from melted plastics, paints, electronics and household waste.

Until the environment is adequately cleaned up, the likelihood is that those who struggle with disease because of exposure to wildfires both during and after may continue to risk their health.

“Seeing the magnitude of the relationship between wildfire PM2.5 and dementia was quite striking,” Casey said. “I was especially struck by how much stronger this relationship was for people living in communities with higher levels of poverty, suggesting that climate change is again increasing health disparities.”

Read more

about climate change

Read the full story here.
Photos courtesy of

How Climate Change Fueled Deadly Los Angeles Fires

A whipsaw swing from very wet to very dry weather exposed millions to flames, smoke and pollutants. The post How Climate Change Fueled Deadly Los Angeles Fires appeared first on .

As unusually strong winds swept across a parched Los Angeles, spreading more than half a dozen firestorms that have now burned an area nearly the size of San Francisco, the fingerprints of climate change were all over the unfolding disaster. The underlying dynamic feeding the flames was a wet-and-dry whiplash in which vegetation, supercharged by heavy rain, dried out and became fuel for fires that left the city all but encircled in flames. It was not difficult for climate experts to connect the dots. Greenhouse gases, mostly from burning fossil fuels, linger in the atmosphere where they heat up the planet, leading to more to extreme weather. A hotter atmosphere holds more moisture, causing rain to fall in intense bursts. The hotter air also increases extreme temperatures and makes dry seasons drier by increasing evaporation.   In Pasadena, a California city on the edge of a major fire burning through Eaton Canyon, where researchers have collected data on precipitation since 1893, they recorded that half of its 20 rainiest days ever occurred since 2000. That includes one day last February when nearly 5 inches of rain fell.  Yet not a single drop has fallen in Pasadena and much of Los Angeles County since early May, according to data from the National Centers for Environmental Information. All the vegetation that grew during the rains in the first half of the year dried out when the rains stopped, transforming Southern California into a vast landscape of tinder that exploded this week.  The intensity of extreme precipitation will continue rising through the century, according to Cal-Adapt, a data analysis initiative sponsored by the California Energy Commission. The state also forecast longer periods of drought exacerbated by rising heat, according to its Fourth Climate Assessment summary report, released in 2018 and currently being updated. These two factors will likely increase the wet-dry cycle, fueling more intense and erratic wildfires, say climate experts. In 2021, the National Oceanic and Atmospheric Administration concluded that drier air due to climate change was the “dominant” cause of variations in wildfire behavior in the West. The effect of the current fires on Los Angeles’ massive population will present researchers with a grim opportunity to study how wildfires can affect large numbers of people in a short period of time. Among the effects is the release of fine particles, called PM2.5, a pollutant that is found in wildfire smoke and that can find its way  into the lungs and bloodstream of those exposed to the smoke. Exposure can lead to decreased lung function, nonfatal heart attacks and death in people with heart or lung disease, according to the U.S. Environmental Protection Agency.  Shahir Masri, associate specialist in air pollution exposure assessment and epidemiology in the University of California, Irvine’s Department of Environmental & Occupational Health, studies climate change modeling and air pollution exposure. He published a study in 2022 that linked rising PM2.5 levels in California to wildfires and, to a lesser extent, heat waves. His previous work found that the number of census tracts in California that experienced major wildfires nearly doubled from 2000 to 2020. Capital & Main spoke to Masri about his work as the fires in L.A. County continued to burn. This interview has been edited for clarity and brevity. Capital & Main: Could you describe how climate change is making wildfires worse? Shahir Masri: It’s a variety of factors linked with climate change. Increasing temperatures and aridity in places like the Western U.S, and in more mountainous areas, you can have earlier snowmelt, which leaves downstream riparian areas desiccated and more fire-prone.  But you also have these earlier spring onsets, which generally speaking means an earlier arrival of spring and warm temperatures. You basically get longer warm summer windows, which has ultimately become a longer wildfire season. Landscapes are drying out more quickly, and the wildfire season begins more quickly and ends later. [The Southern California fires] remind me of 2017-’18, the Thomas fire, which burned from December through Jan. 8.  Shahir Fouad Masri. Photo courtesy Dr. Masri. So these later-burning fires are becoming more frequent. And when you add unprecedented heat waves on top of it, you get yet another scenario where you’re setting the stage for a major wildfire. In 2018, we saw a major wildfire season. The following year, we saw a major rainy season. Then in 2020, we saw the biggest wildfire season in the state’s history. That was a combination of huge growth in 2019 of shrubs and plants and a lot of things in the wet seasons, then the following year we got slammed with aggressively oppressive summer heat.  I fear some of this may have been at play in these fires. The last few years we’ve had really wet winters, and this is now the driest winter we’ve seen in a while. We didn’t get our holiday rain. This area burning now would have been much more resistant to a fire breaking out if we had that rain. So those are some of the factors at play and linked with climate change. In your study, you concluded that higher levels of PM2.5 were strongly associated with nearby wildfires. Why did you study PM2.5? PM2.5 is arguably the most robustly associated pollutant associated with adverse health effects. There have been nearly countless studies looking at the effects of PM2.5 and the increase of asthma, hospital admissions, exacerbated [chronic obstructive pulmonary disease] and short life expectancy.  It’s not entirely clear what causes PM2.5 to be more toxic than PM10 [a type of pollutant in the form of relatively larger particulates], and it’s not clear which forms of PM2.5 are most toxic. Is it because of a higher heavy metal content, or is it worse if it has a higher organic composition or sulfur content? The verdict is still out on that. But setting those composition differences aside, PM2.5 is the main characteristic of this particular type of air pollution that is most associated with adverse health effects. What would you expect the health effects to be from these fires, particularly for poorer communities that you found were most vulnerable to PM2.5 from wildfires? About 7% to 8% of Californians are asthmatics. Asthma attacks are exacerbated by things like air pollution — about 38% to 39% of asthmatic individuals will have an attack at least once a year. Therefore, these wildfires will likely result in quite a few asthma attacks. We will probably also see increased hospital admissions for the exacerbation of chronic conditions such as chronic obstructive pulmonary disease. There’s a whole separate series of health impacts we’re actually looking at through a survey of people exposed to the Tustin [north] hangar fire in 2023. There were a whole host of impacts, including mental stress. In an upcoming paper, we’re talking about mental stress as it relates to wildfires and environmental catastrophes. And I don’t think that should be overlooked, even though it’s less studied.  That, I would presume, will play a role here as well, especially given people abandoning their cars, losing their homes. It’s clearly a lot of trauma inflicted on this population. Post-traumatic stress disorders, anxiety disorders, those are things we see after major wildfire events, especially [in] people close to the fire. These impacts can be quite prevalent and can take quite a long time to dissipate, up to 10 years.  So I think smoke-related impacts are one thing. I think direct injuries from the fire, thermal injuries, are another. Property loss is another as well. But those mental impacts are also a major factor. The volume of greenhouse gases in the atmosphere is at record levels. Do you expect more events like the current Los Angeles fire outbreak? Warming trends in the atmosphere don’t bode well. In addition to wildfire smoke, we also see higher energy demands [to run air conditioners] concurrent with heat waves. And that, depending on which state you live in, translates to greenhouse gas emissions from people using more electricity. Wildfires can wipe out the gains we’ve made from lowering emissions by reducing the prevalence of coal, [for example]. I think there’s a lot of work to be done on climate change in the United States. We have an incoming [presidential] administration notorious for disregarding climate change. And even though President [Joe] Biden acknowledged the importance of climate change and did a lot with the Inflation Reduction Act, we see a reluctance to shift away from fossil fuels even as we see more investments in renewable energy.  Biden broke his promise to end offshore drilling, so we’re seeing this fossil fuel addiction play out and remain, regardless of what political party is in office. In one case, it’s “drill baby drill”; in another, it’s “drill baby drill,” but we’ll also use the sun and wind.  So we’re so far off from where we need to be from policies to get us on the right track. And to highlight extensiveness needed for targets, the COVID-19 pandemic provided clear examples of just how dramatic a shift we’re talking about. We saw an 8% reduction in greenhouse gas emissions during the first year of the pandemic, which is what is needed to comply with the U.N.’s target of an 8% reduction year-over-year for 10 years. That’s hard to fathom, given that our economy is globally grinding to a complete halt. That was an important lesson, and unfortunately we’re not taking steps to get on that track; we’re just ramping up emissions globally.  What gives you hope? What gives me hope is the youth community. My generation was basically much quieter on this issue than the current college generation. With every generation moving forward, the situation becomes all the more dire. It’s been quite inspirational to see them almost single-handedly get major attention and support and popularity around the Green New Deal; those are really youth-driven policy agendas. I think they’ve played a big role in popularizing those ideas.  I think those are major steps that cannot be overstated, and that generation now will be moving into politics, and that’s the most encouraging thing for me as I grapple with these issues.

College Athletics: Game Day for Climate Action

As teams travel thousands of miles to compete, the cost to the planet rises. But sports offer a unique opportunity to advocate for sustainable experiences. The post College Athletics: Game Day for Climate Action appeared first on The Revelator.

Imagine gazing through an airplane window as you pass over Appalachia and, later, the Grand Canyon before touching down just outside of San Francisco. Or grabbing a peek at the Berkshires before feeling the hard ground of Logan airport under thin wheels. This has been the journey of athletes, coaches, staff, and fans of California’s Stanford University and Boston College this past year as the two teams began competing directly in the Atlantic Coast Conference — yes, despite the fact that they’re on different coasts. Located about 3,100 miles apart, they are the farthest-separated competitors in a Power 5 conference and potentially all of college athletics. It’s unclear if this matchup will truly have financial benefits for either school or the conference, but it will have environmental consequences. I’ve always appreciated the amateur aspect of college sports and I continued to appreciate it at a distance from my work in climate activism. But my more formal work in emissions accounting and climate risk have allowed me to see it through a new lens. My preliminary analysis indicates that just one football and two basketball games per season between the Stanford Cardinals and the Boston College Eagles over 10 years will produce equivalent emissions to driving more than 1,000 passenger vehicles for one year. That’s just the result of team member and staff travel and doesn’t even include fan travel, let alone other operations and moving equipment, as well as the many other sports at each school. Air travel is the only real alternative for schools competing at these great distances. High speed rail in this country is years away (though I remain optimistic). Although traditional rail and other nonaviation means are used by an increasing number of professional and college teams, the average cross-country train trip takes three days each way — a difficult burden for athletes who also need to attend classes. But even the most sustainable means of travel have incremental costs and emissions — the greater the distance, the greater the climate cost. Meanwhile many of those travel alternatives are also likely to cost more and, contrary to mainstream narratives, most college athletics, football included, are not “profitable” for universities. Stanford and Boston College are not alone and their matchup is just one of the more egregious examples of this emerging athletic phenomenon. But as a BC alum I feel particularly empowered to call out this piece of their lack of commitment to sustainability. Universities seek to attract students from all over, and BC ranks high for the distance students travel simply to attend. That is not inherently “bad,” but should be understood in the context of transportation emissions and universities’ role, including and beyond athletics. When it comes to sports, hope does exist. The Green Sports Alliance, which I’ve worked with, aims to put into action sustainable events and experiences, especially by our leading universities. Programs like this have great potential. Sports sit at an intersection of health, academia, economy, national and regional identities, international unity, youth, climate, and myriad other cultural issues. While a lot of media coverage highlights negative or outlandish examples, sports have served positively in the fight for racial equity and basic LGBTQ+ inclusion time and again. While they have their issues and can showcase perturbed nationalism or violence, there is a movement toward sports better reflecting positive developments in society. Sports are also beyond bipartisan. Democrat Marty Walsh, a former Boston mayor and labor secretary — as well as a BC alum, I might add — leads the NHL Players Association, while former Massachusetts Gov. Charlie Baker, a Republican, currently leads the NCAA. Both have demonstrated a certain level of leadership on climate, sustainability, and transportation in their political careers, although we have yet to see that translate into their work in the sports world. Sports can be a beautiful and unifying force, especially for climate. In 2020 the leaders of student governments at all Big Ten schools came together to call for specific climate actions from their universities. The Atlantic Coast Conference Climate Justice Coalition launched a similar call later that same year, and student activists in the Ivy League followed in 2021. And of course who would forget the disruption of the Harvard-Yale football game by climate activists? These calls represent 52 universities, 950,000 active students, more than 12 million alumni, and $306 billion in endowment funds. While their impact on emissions is important, we must also take note of the impact of climate change on sports themselves. General travel and athletic events are often disrupted by weather, with climate change making things more volatile every year. This increases the likelihood of games being cancelled, attendance dropping due to poor weather, fans experiencing accidents on the road, or athletes being injured due to poor field conditions. Even the athletes’ travel itself has become more dangerous: Airlines have already measured an increase in turbulence on flights, and it’s anticipated to get worse. Despite that young athletes face increasing pressure to travel for sports. This pressure is tied into larger, and likely problematic, pressure on youth to perform and over-perform in sports and other aspects of their lives. I’ll let others take on that issue in more detail, but let’s be real — travel is, simply, exhausting. There’s another big threat: Some sports we enjoy in colder months — like skiing — could vanish. A study published this November found that without emission cuts, the Winter Olympics may no longer be possible. Protect Our Winters, another organization I’ve worked with, anticipates that threat and seeks to address climate change in defense of winter sports. It’s not just the Olympics: In the future, perhaps that flight from BC will take place over snowless Berkshires or never take off at all due to a flooded Logan Airport. Already built at sea level and on landfill never meant to be habitable, Logan — like many airports, infrastructure, homes, and other buildings — faces the risk of repeated flooding and damage, making it nearly inoperable as it faces its own contributions to the crisis. It is quite difficult to face this conundrum as both contributor and victim. Wherever you stand politically, in your view of how to raise children in the context of sports, or what your position is on whether college athletes should be paid, we can agree that sports affect emissions, emissions affect sports, and both are powerful aspects of much larger systems. This offers an area of intersection that many in the world not often moved by mainstream climate actions might find interesting or action-provoking, and it’s worthy of further analysis. Individual sports still involve a team at the highest level, and we all are or have been athletes or fans. Climate change is the same — our individual actions count, but our collective work is what affects the system. Scroll down to find our “Republish” button Previously in The Revelator: No Wave Is Insurmountable The post College Athletics: Game Day for Climate Action appeared first on The Revelator.

The climate benefits of NYC’s hard-won congestion pricing plan

Driving into lower Manhattan is now more expensive, but the toll promises cleaner air, safer streets, and improved subways.

After months — and, for some, years — of anticipation, congestion pricing is live in New York City.  The controversial policy, which essentially makes it more expensive to drive into the busiest part of Manhattan, has been floated as a way to reduce traffic and raise money for the city’s Metropolitan Transportation Authority, which runs the city’s subways and buses, since the 1970s. But it wasn’t until 2017 that it seemed like it might finally catch on.  Still, getting it implemented has been an uphill battle. Last summer, New York Governor Kathy Hochul abruptly paused a carefully crafted plan that would have implemented $15 tolls on drivers heading into Manhattan below 60th Street, a mere 25 days before the plan would have gone into effect. Months later, in November, she said she would unpause the plan with lower tolls: $9 for passenger vehicles during peak hours and $2.25 during off-peak. After all the hubbub, New York City made history just after midnight on Sunday, January 5, when the cameras used to enforce the tolls turned on.  With this move, New York City becomes the first U.S. city to experiment with congestion pricing tolls, and joins a small cohort of other major cities — London, Stockholm, and Singapore — trying to disincentivize driving in order to unlock safer streets and a host of other environmental benefits. Environmental and public transit advocates praise congestion pricing because it pushes drivers to reconsider whether getting behind the wheel is really the easiest way to get around the city. With fewer cars on the road, congestion pricing promises shorter commute times for those who do drive — and better public transit options, since the money raised by congestion pricing will fund capital improvements by the Metropolitan Transportation Authority, or MTA.  But the policy has not been without its naysayers. One New York City councilmember — Republican Vickie Paladino — appeared to encourage her followers on X (formerly Twitter) to damage the tolling cameras with lasers. Congestion pricing detractors say that tolls are burdensome. Of course, in some way, this is the point: to make driving slightly less appealing and incentivize alternative modes of transportation.  Proponents say these are worthwhile costs to fund meaningful improvements to New Yorkers’ lives — like safer streets and cleaner air.  “At this point, across much of the country, cars are so ingrained into American culture that we don’t always think of them as environmental hazards, but of course they are,” said Alexa Sledge, director of communications for Transportation Alternatives, an advocacy group focused on street safety in New York City. “So a major goal of our climate policy has to be getting people out of cars and on public transit, onto buses, onto bikes, onto trips on foot.” These less carbon-intensive modes of transit, she says, are “always going to be substantially more environmentally friendly.” Cars pass under E-ZPass readers and license plate-scanning cameras on 5th Avenue in Manhattan as congestion pricing takes effect in New York City. Kena Betancur / AFP via Getty Images One of the main selling points of congestion pricing, besides reducing traffic, is improving air quality. Fewer cars on the road means fewer cars emitting exhaust in the nation’s most densely populated city — and less traffic also means that less time spent idling.  An environmental assessment of congestion pricing published in 2023 estimated the impact tolls would have on a number of air pollutants, including carbon monoxide, nitrogen dioxide, particulate matter, and benzene. These chemicals have been linked to health problems including heart disease, respiratory issues, cognitive impairment, and increased risk of cancer. The assessment also looked at the impact tolls would have on greenhouse gases. It analyzed these impacts at a regional level, looking at 12 different counties across New York and New Jersey, and projected how big or small the change in pollutants would be by 2045.  The report found that, with congestion pricing, Manhattan would see a 4.36 percent reduction in daily vehicle-miles traveled by 2045. This would lead to sizable reductions in air pollutants in Manhattan, especially in the central business district (the area drivers must pay a toll to enter). For example, per the environmental assessment’s modeling, the central business district would see a 10.72 percent drop in carbon dioxide equivalents by 2045, as well as a similar drop in fine particular matter, and slightly lower drops in nitrogen oxides and carbon monoxide (5.89 percent and 6.55 percent, respectively).  When you zoom out, the benefits become sparser, but are still meaningful: The assessment found that, across the 12 New York and New Jersey counties included in its analysis, carbon dioxide equivalents would fall by 0.8 percent by 2045. Those 12 counties have a collective population of roughly 14 million. It’s worth noting that real-life impacts will likely differ from these estimates — and it will take robust data collection to see exactly how. The environmental assessment based these projections off a congestion pricing scenario that’s actually slightly more ambitious than the one in place today, with peak tolls for passenger vehicles priced at $9 and off-peak tolls at $7. But the tolls for drivers that Hochul signed off on will ramp up over time. By 2028, peak tolls will be $12, and by 2031, they’ll reach $15. “The most important thing is to start,” said Andy Darrell, regional director of New York at the Environmental Defense Fund, who was optimistic that real-life benefits may surpass these projections over time. “And it’s important to monitor the effects going forward and then be able to adjust the program as we go. And I think that’s exactly what’s happening now.” A congestion pricing warning sign on 5th Avenue in Manhattan. Kena Betancur / AFP via Getty Images Eric Goldstein, the New York City environmental director at the National Resources Defense Council, was similarly confident about congestion pricing’s benefits. Over email, he said, “Even if the reduction in traditional air pollutants and global warming emissions are modest from implementation of congestion pricing, the indirect air quality benefits will be substantial over the long term,” adding that congestion pricing will “provide a jolt of adrenaline to the region’s subway, bus, and commuter rail system that moves the overwhelming majority of people into and out of Manhattan.” The environmental assessment also found that, as a result of congestion pricing, traffic may increase in other parts of the city, like the Bronx, where neighborhoods like the South Bronx already suffer from disproportionately high rates of asthma. To offset this, the MTA has promised to fund several mitigation efforts, such as replacing diesel-fueled trucks around Hunts Point, a bustling food distribution facility, with cleaner models. It will also install air filtration systems at schools located near highways, plant more trees near roads, and establish a Bronx asthma center.  These efforts, however, have done little to reassure local community members. In November, South Bronx Unite, a coalition centered on social and environmental justice, called New York City’s revived congestion pricing plan a “death blow” for the South Bronx and said the mitigation efforts do not go far enough to address the root causes of pollution in the area. “We welcome all pollution mitigation measures for the South Bronx and for any pollution-burdened community, but they should not be dangled in front of us as a bargaining chip for adding more pollution to the area,” Arif Ullah, the group’s executive director, told reporters.     Beyond cleaner air for most of the region, congestion pricing is likely to have other environmental and climate benefits. For example, the money raised by congestion pricing tolls will allow the MTA to access $15 billion in financing for capital improvements, such as making subway stations more accessible. These sorts of upgrades, while not technically designed with climate change in mind, make the subway safer and more efficient to use — and that matters when extreme weather strikes. Sledge, from Transportation Alternatives, said: “People really do rely on our subway system to get them where they need to go, and if there is a mass weather event, then that’s really scary and really difficult.” In September 2023, rainstorms caused flash flooding in New York City, overwhelming the subway system in many places. After Hochul declared a state of emergency due to the extreme rainfall, the MTA warned of disruptions “across our network” and advised people to stay home if they could. Climate change makes extreme rainfall more likely because rising ocean temperatures lead to more water evaporating into the air. As Sledge notes, these weather events are “obviously only getting more and more common” as global temperatures keep rising. “So anything we can do to mitigate this is going to be extremely important as we move forward.” Technically speaking, the funds raised by congestion pricing will only be spent on capital improvements included in the MTA’s 2020-2024 capital plan; the agency will likely need to raise another $6 billion to fund its climate resilience roadmap, which includes things like elevating subway vents to prevent storm surges from flooding subway stations.  But experts agreed that improving the public transit system is critical to achieving New York City’s climate goals. “For a very densely populated region like the New York metropolitan region, that investment in transit is fundamental to achieving our climate goals and our air quality goals,” said Darrell from the Environmental Defense Fund.  The National Resources Defense Council’s Goldstein agreed: “Ultimately, if we can’t adequately fund this public transit system so that it provides safe, reliable and efficient service, the region’s environment, as well as its economy, is certain to decline.” This story was originally published by Grist with the headline The climate benefits of NYC’s hard-won congestion pricing plan on Jan 10, 2025.

Earth Records Hottest Year Ever In 2024 And The Jump Was So Big It Breached A Key Threshold

Global temperatures in 2024 soared to yet another record level, but this time it was such a big jump that Earth temporarily passed a major symbolic climate threshold.

FILE - A woman tries to cool herself while waiting for a bus on a hot day in Skopje, North Macedonia, June 20, 2024. (AP Photo/Boris Grdanoski, File)Earth recorded its hottest year ever in 2024, with such a big jump that the planet temporarily passed a major climate threshold, several weather monitoring agencies announced Friday.Last year’s global average temperature easily passed 2023′s record heat and kept pushing even higher. It surpassed the long-term warming limit of 1.5 degrees Celsius (2.7 degrees Fahrenheit ) since the late 1800s that was called for by the 2015 Paris climate pact, according to the European Commission’s Copernicus Climate Service, the United Kingdom’s Meteorology Office and Japan’s weather agency.The European team calculated 1.6 degrees Celsius (2.89 degrees Fahrenheit) of warming. Japan found 1.57 degrees Celsius (2.83 degrees Fahrenheit) and the British 1.53 degrees Celsius (2.75 degrees Fahrenheit) in releases of data coordinated to early Friday morning European time.American monitoring teams — NASA, the National Oceanic and Atmospheric Administration and the private Berkeley Earth — were to release their figures later Friday but all will likely show record heat for 2024, European scientists said. The six groups compensate for data gaps in observations that go back to 1850 — in different ways, which is why numbers vary slightly.“The primary reason for these record temperatures is the accumulation of greenhouse gases in the atmosphere” from the burning of coal, oil and gas, said Samantha Burgess, strategic climate lead at Copernicus. “As greenhouse gases continue to accumulate in the atmosphere, temperatures continue to increase, including in the ocean, sea levels continue to rise, and glaciers and ice sheets continue to melt.”Last year eclipsed 2023′s temperature in the European database by an eighth of a degree Celsius (more than a fifth of a degree Fahrenheit). That’s an unusually large jump; until the last couple of super-hot years, global temperature records were exceeded only by hundredths of a degree, scientists said.The last 10 years are the 10 hottest on record and are likely the hottest in 125,000 years, Burgess said.July 10 was the hottest day recorded by humans, with the globe averaging 17.16 degrees Celsius (62.89 degrees Fahrenheit), Copernicus found.By far the biggest contributor to record warming is the burning of fossil fuels, several scientists said. A temporary natural El Nino warming of the central Pacific added a small amount and an undersea volcanic eruption in 2022 ended up cooling the atmosphere because it put more reflecting particles in the atmosphere as well as water vapor, Burgess said.“This is a warning light going off on the Earth’s dashboard that immediate attention is needed,″ said University of Georgia meteorology professor Marshall Shepherd. ”Hurricane Helene, floods in Spain and the weather whiplash fueling wildfires in California are symptoms of this unfortunate climate gear shift. We still have a few gears to go.”“Climate-change-related alarm bells have been ringing almost constantly, which may be causing the public to become numb to the urgency, like police sirens in New York City,” Woodwell Climate Research Center scientist Jennifer Francis said. “In the case of the climate, though, the alarms are getting louder, and the emergencies are now way beyond just temperature.”The world incurred $140 billion in climate-related disaster losses last year — third highest on record — with North America especially hard hit, according to a report by the insurance firm Munich Re.“The acceleration of global temperature increases means more damage to property and impacts on human health and the ecosystems we depend on,” said University of Arizona water scientist Kathy Jacobs.World breaches major thresholdThis is the first time any year passed the 1.5-degree threshold, except for a 2023 measurement by Berkeley Earth, which was originally funded by philanthropists who were skeptical of global warming.Scientists were quick to point out that the 1.5 goal is for long-term warming, now defined as a 20-year average. Warming since pre-industrial times over the long term is now at 1.3 degrees Celsius (2.3 degrees Celsius).“The 1.5 degree C threshold isn’t just a number — it’s a red flag. Surpassing it even for a single year shows how perilously close we are to breaching the limits set by the Paris Agreement,” Northern Illinois University climate scientist Victor Gensini said in an email. A 2018 massive United Nations study found that keeping Earth’s temperature rise below 1.5 degrees Celsius could save coral reefs from going extinct, keep massive ice sheet loss in Antarctica at bay and prevent many people’s death and suffering.Francis called the threshold “dead in the water.”Burgess called it extremely likely that Earth will overshoot the 1.5-degree threshold, but called the Paris Agreement “extraordinarily important international policy” that nations around the world should remain committed to.European and British calculations figure with a cooling La Nina instead of last year’s warming El Nino, 2025 is likely to be not quite as hot as 2024. They predict it will turn out to be the third-warmest. However, the first six days of January — despite frigid temperatures in the U.S. East — averaged slightly warmer and are the hottest start to a year yet, according to Copernicus data.Scientists remain split on whether global warming is accelerating.There’s not enough data to see an acceleration in atmospheric warming, but the heat content of the oceans seem to be not just rising but going up at a faster rate, said Carlo Buontempo, Copernicus’ director.“We are facing a very new climate and new challenges — climate challenges that our society is not prepared for,” Buontempo said.This is all like watching the end of “a dystopian sci-fi film,” said University of Pennsylvania climate scientist Michael Mann. “We are now reaping what we’ve sown.”Follow Seth Borenstein on X at @borenbearsThe Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org

We tracked the Tasmanian boobook as it flew a remarkable 250 kilometres non-stop across Bass Strait

Understanding this migration is crucial. New developments proposed in Bass Strait, particularly offshore wind farms, may introduce challenges for migrating birds.

By JJ Harrison - Own work, CC BY-SA 4.0., CC BYEvery year, tens of thousands of land birds make a long flight across Bass Strait – the stretch of water separating Tasmania from continental Australia. Well known for its high winds and rough seas, crossing Bass Strait is no small feat for these migrant land birds. Migration is stressful for birds, as they encounter inhospitable environments, predators, and weather changes while expending peak energy. But how exactly do these birds traverse this daunting stretch of ocean? Understanding this is more crucial than ever. New developments proposed in Bass Strait, particularly offshore wind farms, may introduce challenges for migrating birds. And until now, no one has looked closely at the movement pathways of these little migrants. Our new research tracked the migration paths of Tasmanian boobooks, Ninox leucopsis, as they crossed from Victoria to Tasmania. We found the Tasmanian boobook was indeed a regular migrant across Bass Strait – making it Australia’s only migratory owl. Rather than island-hopping, these small owls completed the roughly 250 kilometre flight across the strait in a single night, in one continuous flight. These insights may help us protect birds in a rapidly changing world. Well known for its high winds and rough seas, crossing Bass Strait is no small feat for these migrant land birds. Shutterstock/nektofadeev Tagging and tracking the Tasmanian boobook As their name suggests, Tasmanian boobooks are common across Tasmania and were once considered endemic to the island. Over time, they were occasionally spotted in mainland Australia, with scattered records in Victoria and elsewhere. In recent years, a more consistent pattern was revealed when keen birdwatchers discovered small numbers of these owls perched on Cape Liptrap, southeast of Melbourne, in spring. Could these birds actually be migrants about to make the Bass Strait crossing after winter on the mainland? With thermal cameras, special nets, and lightweight miniature GPS-tracking devices in hand, we travelled to the southeast Victorian coast to catch five Tasmanian boobooks at these headlands. Once we attached the tracking devices, we could follow their movements for up to three weeks before the tags failed and were dislodged. Researchers attached tracking devices to the owls. Jessica Zhou Facinating findings We found the Tasmanian boobook is Australia’s only migratory owl. In fact, it is what’s known as a “partial migrant”. This means while some birds of the species migrate, many other individuals remain in Tasmania year-round. Three of our tagged birds departed southeast Victoria in October and November. They began their nonstop journeys at dusk and arrived in northern Tasmania early the following morning. Two continued moving further inland to central Tasmania over subsequent nights and eventually settled at elevations of around 750 metres. These observations suggest the migrating Tasmanian boobooks may be fleeing harsh winter conditions at high elevation areas. This phenomenon, known as altitudinal migration, has been observed in other Tasmanian birds such as the flame robin and crescent honeyeater. We also discovered unexpected variety in the Tasmanian boobook migration patterns. Some birds left from Cape Liptrap and others from Wilsons Promontory, at the southern tip of Victoria. They also flew at varying speeds under a surprising range of weather conditions, including headwinds upon departure. This is in an impressive feat for an owl, which weighs just 210–240 grams and probably undertakes the crossing by continuously flapping its wings. New clues and questions about other Bass Strait migrants Bird migration in the southern hemisphere is little-studied compared with northern hemisphere migration. In Australia, movement patterns are particularly complex and variable due to the vast scale of the continental landmass, the variable geography such as mountains, deserts, and islands, and unpredictable climate. At least 24 species migrate across Bass Strait. They range from songbirds and raptors to the critically endangered orange-bellied parrot and swift parrot. Much of what we know comes from limited land-based observations. The Tasmanian boobooks we tracked give us just a small insight into the many migratory journeys across Bass Strait. However, the variation we observed in just three migratory tracks for a single species raises questions about other Bass Strait migrants. Are islands less crucial as stopover points than previously thought? Even for species like the orange-bellied parrot, which does use islands, it remains plausible many individuals might cross Bass Strait in a single non-stop flight. These unanswered questions about bird movement across Bass Strait is not just a matter of curiosity. Hazards old and new Migratory birds are exposed to a greater range of threats than non-migratory birds. Crossing Bass Strait means risking inclement weather, artificial lighting, and collision with boats or oil rigs. Now, new developments may also present novel challenges. Australia is rapidly expanding its renewable energy sector, including offshore wind. Several areas in Bass Strait have been declared by the federal government as priority areas for wind farm development and many projects are already being planned. These developments are essential for reducing emissions and combating climate change. But how do we balance the necessary transition to clean energy, while minimising direct harm to biodiversity? Offshore wind farms can displace birds from their routes, or worse, introduce collision risks. Environmental assessments are a mandatory part of wind farm development in Australia, but they need to be informed by robust ecological data. Understanding the basic ecology of land-bird migration is crucial. We need to know where the threats to migratory birds are highest, which species are at risk of collisions, and how to mitigate these threats as the transition to renewable energy continues. Jessica W. Zhou's research group works with various stakeholders to address the threat posed by wildlife collisions with wind energy infrastructure. This includes contracts with wind farm developers, environmental consultancies, and DCCEEW and NOPSEMA, as the federal regulators of offshore wind. The research group has also received funding from environmental consulting firm Biosis.Rohan Clarke's research group works with various stakeholders to address the threat posed by wildlife collisions with wind energy infrastructure. This includes contracts with wind farm developers, environmental consultancies, and DCCEEW and NOPSEMA, as the federal regulators of offshore wind. The research group has also received funding from environmental consulting firm Biosis.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.