Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

As Hurricanes Bear Down and Get Stronger, Can a $34 Billion Plan Save Texas?

News Feed
Thursday, August 8, 2024

Illustration by Emily Lankiewicz / Images via public domain / Library of Congress / FEMA / NASA / Carl & Ann Purcell / Getty Images After Hurricane Ike destroyed thousands of homes and inflicted an estimated $30 billion in damages in 2008, engineers hatched an ambitious plan to protect southeast Texas and its coastal refineries and shipping routes from violent storms. The $34 billion collaboration spearheaded by the U.S. Army Corps of Engineers is a harbinger of the type of massive public works projects that could be required to protect coastal cities like New York and Miami as sea levels rise and hurricanes become less predictable and more severe due to climate change. In this episode of “There’s More to That,” Smithsonian magazine contributor and Texas native Xander Peters reflects on his experiences growing up in a hurricane corridor and tells us how the wildly ambitious effort came together. Then, Eric Sanderson, an ecological historian, tells us how the project could be applied to other low-lying coastal cities. A transcript is below. To subscribe to “There’s More to That,” and to listen to past episodes on how a new generation of high-end West African restaurants is revealing the roots of “Southern” cuisine, why Colombian conservationists are now trying to sterilize the hippos descended from drug kingpin Pablo Escobar’s personal menagerie, what humans’ great acumen for sweating has contributed to our evolution and more, find us on Apple Podcasts, Spotify or wherever you get your podcasts. Chris Klimek: What part of Texas are you from? Xander Peters: I’m over here in East Texas. We’re about 30 miles from the Louisiana border. Klimek: Xander Peters is a contributor to Smithsonian magazine. Peters: It’s a real small town, about 2,000 people. Klimek: What’s life like there? Peters: As a 33-year-old single guy? Kind of boring at times, but it’s home, you know. Not a lot of people move here, but not a lot of people leave, either. So maybe that speaks for itself. Klimek: What’s the geography like? Peters: It’s marshy. It’s wet. We’re kind of the last stretch of the Louisiana swamp, as we all know it. So it’s a wet, humid, difficult place at times. Klimek: One of the constants in Xander’s life growing up in East Texas was hurricanes. Peters: The most memorable was in 2005. Hurricane Rita pretty much was a direct impact to the region. I think it was my freshman year of high school. The power was out for three or four weeks. Society literally shut down. It was hard to get gas. You couldn’t really get groceries. Of course, there was Hurricane Harvey in 2017, and the list goes on. But it’s a fact of life here. Klimek: This area has already been impacted by hurricanes this summer, and there may be more to come. In July, Hurricane Beryl left millions without power in the dangerously high heat, leading to more than 20 deaths. Local officials can’t prevent these big storms, but they can try to prevent the damage, which is why one of the most ambitious and expensive infrastructure projects in the country is in progress, right there along the Galveston coast. But will it be enough to prevent loss of property and life? Or do we need an entirely different way of thinking? From Smithsonian magazine and PRX Productions, this is “There’s More to That,” the show that’s glad to be your nerdy listening alternative to the song of the summer. In this episode, we learn about the so-called Ike Dike going up in East Texas, as well as alternative flood prevention efforts that rely on nature itself. I’m Chris Klimek.Klimek: In the July/August issue of Smithsonian magazine, Xander Peters wrote about a place just a short drive from his hometown: the Bolivar Peninsula. Peters: It’s hard to imagine a more vulnerable geographic location than Bolivar Peninsula. It’s almost totally surrounded by water, so when a storm surge comes, it comes in nearly every direction. Klimek: What’s this region’s history with big storms? Peters: It’s hard to talk about southeast Texas without talking about its storms. It’s defined not just every generation, but every decade. Going back to the Galveston Storm of 1900, which claimed the most fatalities of any American natural disaster. We had Harvey in 2017, which was catastrophic flooding. The list goes on. At this point, I have mixed up the more recent names. I feel like, you know, your grandmother kind of does a roll call of all the children in the family. That’s how I feel about hurricanes now. Klimek: The biggest storm in Xander’s recent memory was 2008’s Hurricane Ike. Peters: We’d never seen the kind of storm surge result from a hurricane as we saw from Ike. And after that storm, it actually changed the way the National Hurricane Center conducts analysis and gives insight ahead of event into a storm surge. And, really, our broader understanding of what creates the disaster aspect of this kind of natural disaster. Klimek: Was it forecasted to be as catastrophic as it was? Peters: We knew it was going to be bad. It was a mandatory evacuation for, I think, even up to my region in East Texas, about 100 miles north of the coast. So we knew it was going to be bad. We at first thought it was going to be a direct hit to the Houston shipping channel, which is all kinds of bad news. We’re looking at $900 billion of goods that go up and down, much of which is oil and gas related, up and down the Houston shipping channel every year. We have the world’s largest petrochemical corridor. And if it’s a fuel, if it’s a gas, it’s being refined there. It’s being made there somehow. And then it’s going to faraway places like Europe. But we got lucky. It missed the shipping channel by about two miles, and it hit around Galveston and Bolivar instead. So Bolivar was not so lucky. But in terms of the larger human toll, very lucky. Because if a storm surge hits the Houston shipping channel directly, we could be looking at a Chernobyl-like event, just given some of the refining capacity across the region. Klimek: What did it look like there on the peninsula after Ike? Peters: There was nothing left. Sixty to 80 percent of the structures were gone. You look at Highway 87, which stretches down pretty much the entire span of the peninsula, and [it was covered in] one or two feet of sediment and mud. There were cattle carcasses, alligator carcasses. There were snakes and rats running wild, confused. There were laundry machines scattered everywhere. There was twisted metal, broken telephone poles, everything in a million huge piles. Klimek: In your story, you mentioned a smell that was very particular. Peters: Yeah. Death lingered for months. I mentioned the cattle carcasses, and there are human carcasses in some places. And all the grasses and the stuff in people’s houses was molding and rotting, and there’s just every foul smell you can imagine. I’m not a military veteran. I’ve never fought in a war. But I can imagine that’s what a battlefield would smell like, you know? Klimek: For more than 100 years, people in the area have been trying to prevent storm surges like this one. Peters: After the Galveston Storm in 1900, they built a kind of state-of-the-art seawall, which has been raised a couple times, if I’m not mistaken, over the last century or so. It was commissioned only a few years after the storm. Meanwhile, you look at Bolivar Peninsula, it has none of those same infrastructure protections. Klimek: So how did the idea of the Ike Dike come together? Peters: A lot of arguing. Klimek: The Ike Dike is the informal name for the massive infrastructure project that officials are betting the future of the Bolivar Peninsula on. Officially called the coastal Texas project, it involves three dozen sea gates leading up to the Houston shipping channel, and large concrete floodwalls to reinforce the city of Galveston. With a $34 billion price tag, it’s being overseen by the Army Corps of Engineers, but it was first envisioned by a local researcher. Peters: Dr. William Merrell. He’s a professor at Texas A&M Galveston, and he’s a marine scientist. He and his wife are also investors in some of the antique architecture across Galveston. As Ike blew in, he came up with a concept that was a barrier system around Galveston that would open and close ahead of events such as Ike. He sat down that evening, as the lights remained out, and started sketching out some of the first designs of what the federal government will break ground on in the coming months—after some 16 years. Klimek: Part of the delay came from the controversial nature of the project. Critics argued the Ike Dike would do irreparable damage to the environment, that it was too complex to work and that it was too expensive. Several different groups submitted their own plans. But after local officials asked Congress to step in, the Army Corps of Engineers was put in charge. Federal help comes with federal money. Klimek (to Peters): Who’s funding this, and what kind of money are we talking about? Peters: Sixty-five percent is coming from the federal government. Texas will pick up the remaining 35 percent. Only about $500,000 of that’s been allocated so far. But the Army Corps says accounting for inflation and everything else that threw it off the end of the project, we’re probably looking at something close to $55 billion. And I wouldn’t be surprised if it’s higher than that. Klimek: All right. So, assuming all this investment buys what we hope it does, how is the dike intended to protect Galveston from storm surges? How will it work? Peters: The whole idea is to stop the water at the sea, not let the water get into the Houston Ship Channel, which causes flooding all the way across it. So essentially, it’s a big gate that, in theory, will stop this huge wall of water as it surges toward the coast ahead of hurricane events like Ike and other ones. It draws on a Dutch flood theory, and the Dutch have some of the earliest forms of flood mitigation systems. Nothing like this has ever been even attempted in the U.S. Not at this scale, not with these high of stakes. It’s a new defining of how not just the federal government, but state governments as well, are going to approach building our way out of the climate crisis. Klimek: How will the gate-and-ring system work? Peters: Twenty-four to 48 hours ahead of a storm surge event, the alerts start going out, and they start moving some of the first ships out of the Houston Ship Channel. And, essentially, they have to hit that button to close the two main gates at the right time so that not too much water gets past it as the storm surge begins coming in in the 12 or 18 hours ahead of a hurricane. When I think of the Ike Dike gates closing, I think of, like, Indiana Jones when the stone rolls out of the cave after him, in terms of what these massive walls will look like moving toward each other. Klimek: How will the Ike Dike incorporate natural storm barriers like sand dunes? Peters: There along Bolivar Peninsula, we’re going to see a massive dune system. I think it was 12- to 14-foot dunes with a swale between them. That is going to line the stretch between Highway 87 and the beachfront. And that’s just piling sediment and sand on top of each other to create a wall. That’s nothing different than what the tides have done themselves, except to a much, much, much larger degree. And then in other places, we’re going to see wetlands restoration, which helps buffer storm surge from the coast. I think it was 6,600 acres of wetlands restoration or remediation for similar marshlands. So it’s equally significant — the natural restoration process — as much as the engineering phase of the project. Klimek: What kind of concerns have environmentalists raised about the coastal Texas project? Peters: Rightful ones, actually. It’s to be expected when you essentially inject these enormous concrete structures into ecosystems. Over the last 50 years in the Netherlands, environmental researchers have noticed changes to ecosystems, sediment patterns being shifted around. And that’s the same concern that we’re seeing on the Texas coast. These are unprecedented actions. A lot of this project is operating on hypothesis and theory. We probably can expect to see some ecological changes along the Texas coast as a result of it long term. Klimek: So how does what they’re trying to do in Galveston reflect how we’re responding nationally to increasingly severe storms and floods? Peters: I guess we’re paying attention now. It took a long time to get to this point. We’re approaching the 16-year anniversary of Ike, and you look at the Houston Ship Channel. You look at Bolivar and the months after Ike. It’s a pretty convincing argument. And over the years, we’ve seen the same argument made over and over. It’s very slow-moving, and I feel it’s very difficult to respond to a fast-moving crisis with a slow-moving solution, but it seems to be the best we have.Klimek: For more context on floods and their potential solutions, we reached out to an expert. Eric Sanderson: Hi everyone, I’m Dr. Eric Sanderson. I’m the vice president for urban conservation at the New York Botanical Garden. I live and work in New York City, and I’ve studied the historical ecology of New York for many years. Klimek: Eric recently spoke about flooding on New York Botanical Garden’s new podcast, “Plant People.” And while New York City may be far from Houston, it faces many of the same challenges. Sanderson: I was here during Hurricane Sandy, and I was here during Hurricane Ida. And after Sandy, I made this map that showed that the areas that flooded during Sandy were more or less where the tidal marshes were around the city. And I showed that around. And at the time, a lot of people are like, oh, well, that’s kind of interesting. But I guess that makes sense. Those would be the lowest places, right? But then Hurricane Ida happened in 2021, and Hurricane Ida was not a coastal storm, but an intense rainstorm. And what re-emerged were the upland streams and wetlands and ponds and places that people weren’t expecting. I made a map there, kind of compared that, and I started talking about it, and I wrote a little thing that was in the New York Times that just made the case that the water is going to go where the water is going to go, and that’s going to be downhill, and that’s going to be where the old streams were. Klimek: Eric does a lot of work with historic maps. He overlays the original topography of a place with the city we know now to reveal where the rivers, lakes, streams and marshes used to be. Often these are the very same places that flood during storms. Sanderson: We call those areas “blue zones,” and they cover some 20 percent of New York City. Places where about a million people live. Klimek: So you’re saying that some of the flooding resulting from Hurricane Ida happened in surprising places, places that were not predicted to flood? Sanderson: Yes. Basements were flooded. And it turns out that a lot of those places were former wetlands or ponds or streams. Because when we build, the city will fill in the wetland. But it’s actually hard to raise the topography high enough that you divert the direction of the water. The water goes where the water has always gone. Klimek: Eric says some of the best examples can be found in our nation’s airports. Sanderson: Think about where JFK Airport is, or LaGuardia Airport, in New York. JFK Airport is built on a big salt marsh. The Great Haystack, as it was called. LaGuardia is actually built in Bowery Bay. It was built in a bay! They filled in the bay, and they built the airport. And why is that? Why did they do that? It’s because by the time we decided we wanted commercial aviation in the late ’20s and 1930s, most of the upland had been built on, right? And so, you know, you weren’t going to, like, clear Flatbush in order to build an airport. What the city did is they took whatever they had, which was the near-coastal zone, and they filled it in. That’s what LaGuardia [is]. And that’s what we did for JFK, and that’s Newark Airport. But that’s also, you know, Reagan Airport in D.C., and that’s also SFO in San Francisco and the Oakland Airport and practically every airport in a coastal city. And it’s because of the relationship of when that technological economic activity developed in the historical projection of the city. It’s fascinating. Klimek: Are there specific human populations most likely to be affected by floods? Sanderson: Yeah. Well, everybody who’s in a low spot. It turns out, of course, that those places have been wet for a long time. Many of them were less desirable. And there’s two consequences of that: One is that they’re disproportionately in public hands, still. So there are places where schools are, where public housing is, where parks are. Because those places were less desirable for private development in the past. And so they tended to stay in the public sphere. The other sort of important factor is poor people. You know, people with less power and less financial capacity tend to go to the places that are more affordable and in some sense have been, you know, shunted by the various systematic mechanisms. You know, redlining and these sorts of things tend to push people into certain precincts of the city. It just turns out that some of those precincts of the city were formerly wetlands, and then those former wetlands are starting to flood again. We did an analysis of our blue zones against environmental justice areas of the city. And about a third of the blue zones overlap with areas that are identified as environmental justice communities. Klimek: Our magazine story about flooding is largely set in Houston, which, you know, in recent days as we’re speaking has been hit by Hurricane Beryl-related flooding. But this obviously has been a problem there for decades, considering that Houston, too, was built on a swamp. Why are so many of our major U.S. cities built on floodplains? Sanderson: They weren’t built to destroy swamps, per se. It’s more, if you think about where it’s a good place to put a city, there’s sort of four factors. One is that there is food. So you have to have agricultural land nearby, and you need water. You need fresh water, right? You also want to be on a trade route. So that means cities like to be on the coast, or on major rivers, or some way of moving stuff around. And the fourth one is defense. A lot of cities were founded at a time where, you know, you had to worry about other people. So they’re often in defensive places. It’s maybe worth saying, Chris, that once a city is established, the next best place to put a city is right beside the city you already have. Once you have that core, then they tend to grow out sort of radially from them. Klimek: So in Houston, the so-called Ike Dike, this massive infrastructure project—I want to ask how you feel about these kinds of large-scale solutions. Is there a limit to what can be achieved with these kinds of massive infrastructure projects? Sanderson: I can’t speak specifically to the details of Houston, but there’s similar sorts of things proposed here in New York. And what I would just say is, I don’t think you can solve the problem with the same kind of thinking that created it in the first place. There was this idea that developed during the Enlightenment, and was expressed through the Industrial Age and into the 20th century, that we could basically control nature. That we were smarter and more powerful than nature is. And the consequences of that are that we have radically changed the atmospheric composition of the Earth in such a way that it’s holding in more energy and creating these storms. So there’s that. And then, you know, we thought, “We can build on a beach, we can build on a wetland. We’ll just fill it in; it’ll be fine.” But we didn’t anticipate sea-level rise and climate change and more severe storms. And so I really think this is a moment where we need a different way of thinking and another kind of wisdom. Klimek: What would a more comprehensive long-term solution for a coastal city, whether it’s Houston or New York, what would that look like if we had some way to address all of this pre-existing construction, and the fact that we’re having to interpolate centuries of prior development? If we could somehow put that aside and just think about the future, what would you do? Sanderson: So I would take the historical lesson, which is that we’ve overbuilt in some places, we built in places that we shouldn’t have. And so, what should we do? I think there are some places where we need to invest in nature instead of more infrastructure. I think it’s actually the reverse thing. Don’t build a giant wall; build a giant park. Don’t build a new storm drain; build a stream. Don’t build another massive retention pond that you don’t know how big to make it; build a wetland that knows how to adapt to changing conditions. And that’s hard, because it means that it just isn’t a problem of the neighborhoods that are flooding. It’s also a problem of the upland areas that aren’t flooding. If a million people need to move, and we need to build another million housing units in safer places—and probably more to help with the housing affordability and other things, right? This is what I mean. It challenges us at many levels. It challenges us in terms of the wisdom to know what to do as an individual person or individual family, but it also challenges our social structures. We need to have a mechanism to try and work that out, and then we need to restore the nature that we destroyed, and that will save us. Klimek: Do plants have a role to play in addressing some of the problems we’re having with flooding? Sanderson: Planting really is the key here. And that’s what I mean by restoring nature from a water perspective. When you see a tree, you should think of a straw. You have this organism that has these roots that are going down into the ground, and they’re pulling the water out and they’re putting it back in the atmosphere. The traditional way of managing water in the city is to build pipes and infrastructures that replace the streams, right? And then take it to the water treatment plants. That’s sort of this one way of managing water. And the goal is to get rid of it as fast as possible. Nature’s way is: There’s many routes that water can take. Water can run down a stream, but it can also percolate into the ground and into the aquifer. Or it can evaporate or evapotranspiration through trees and up into the atmosphere, right? It has multiple pathways to go. So these are all sorts of lessons out of ecology that we can apply with plants to make flooding better. More trees is going to help with interception. It’s going to help with groundwater flows, and it’s going to help with evapotranspiration. More wetland plants is going to help with slowing the water, holding the water and providing habitat for other organisms that use that water. Nature’s been at this for a long time. Like, it really has a lot of great tricks that we can lean into in a way that can make our lives better, too. Klimek: Eric spoke about another innovative solution called “stream daylighting.” Most of the small streams that used to exist in the landscape have been forced underground, rerouted into pipes or otherwise covered by our urban infrastructure. Daylighting restores the streams, bringing them back up to the surface. Sanderson: Here in New York City, there’s this fascinating story on Staten Island that when Staten Island was developing, there was this moment where they were about to spend a lot of money on their sewage infrastructure. And then someone said, well, why don’t we put some of that money into just restoring the streams? And then the streams can help with the stormwater. We can do some adaptations. We can build some ponds and things to help hold a little bit more water in the system. And then the sewage system can just deal with the sewage and not have to deal with the stormwater. But then there’s other things that are being invented, like a green roof. You know, a green roof actually slows the water down. And it used to be that our green roofs, you know, were pretty shallow. But there’s been a lot of experimentation. I was slightly involved with a project that Google built in New York, where they took an old industrial building that was strong enough that they used to drive trains into this building, like locomotives, at the end of the High Line. It’s now an office building, and they popped up the middle of it to create the office structures, and then they put green roofs on them, and those green roofs could hold enough weight that they can have trees on them. Trees and shrubs and plants. And then they planted them with 95 percent native plants. So they’re doing the water thing and they’re doing the biodiversity thing at the same time. It’s a really beautiful project, and an acre and a half of habitat on the West Side of Manhattan. Incredible. Klimek: The solutions to flooding as a result of coastal surges—are those different from rainfall-induced flooding, or do we address them in the same way? Sanderson: We have to address them in different kinds of ways, because the coastal storm surge, that’s the sea level. And then the waves that are being driven by a storm. And so that’s really about, in my view, dunes and beaches and maybe oyster reefs to help break that energy of the storm water and then salt marshes to help absorb it. If it’s an intense rainfall, I think that’s about streams and wetlands and interior modifications giving the water someplace to go. The problem is that you could try and solve one and mess up the other. I think this is why the engineers are so interested in this problem, and they can design something if you tell them what to design for. It’s easy to do the design, but then to miss the specification by a little bit. Remember during Hurricane Sandy when there was that famous photograph of Lower Manhattan being all dark? That’s because the flood took out a power plant that was on the East Side of Manhattan. There was on a little hill beside an old salt marsh. It was designed to be 12 feet above the tide, and that storm surge was 14 feet. So it was just two feet over. You know, like, if they designed it at 14 or 16 feet or would have been OK. When they built that thing, nobody knew exactly what it was. You’re taking a guess. You’re sort of rolling the dice. Natural systems are adaptive on their own. So it’s not like there’s a design blueprint for nature that says, this is exactly what it’ll do. Nature’s a little bit more adaptable, and it can do kind of different sorts of things. And I think that’s a strength in the long run. But it makes people uncertain in the short run. Klimek: Are there any other solutions we haven’t gotten to yet, either in New York City or other cities, approaches to addressing flooding that you find worthy of exploration? Sanderson: We didn’t mention specifically things like bioswales, which are sort of like a small little version of a forest or a little wetland on the side of a street. There’s this idea of permeable pavers, you know, allowing water to get to the ground. Essentially, we’ve covered our cities in stone because we don’t like mud. Essentially, we’ve paved over the city, and our buildings are built in these hard materials, which are like stone and glass and so forth. And so that’s why the water sheets off of it. And, you know, anybody can do this experiment. You just take a bucket of water and go outside and pour it on a rock and watch how fast the water comes off. And then you pour it on the adjacent soil and you’ll see how fast it infiltrates to the ground and doesn’t run off. And so we’ve hardened the city. Anything we can do to soften the city that way, to expose the soil, it’s going to help us with water. I think the only thing to say about that, of course, is that, you know, in the historical conditions, when it was a forest, the water that was in the ground would either eventually emerge in a spring and a stream or go down into the aquifer and then out into the ocean. Now we have other stuff that’s also on the ground, like the subway system and like all the electrical wires, and all the plumbing. So it’s a little bit more complicated. There’s a lot of work in cities to put water in the ground, and I totally understand why. But if you’re ever in New York City on a rainy day, it’s raining above the ground and it’s raining below the ground, in the subway system. Water is single-minded like this. It just wants to go downhill. Klimek: It sounds like we really need to think about more than just rerouting water to solve some of these problems that coastal cities are experiencing. What are the opportunities that we could open up by thinking about more than just moving excess water from one place to another place? Sanderson: Well, I think we need to think about the mitigation side. Of course, everything we’ve talked about adapting to flooding doesn’t mean we don’t have to do something about trying to decrease the amount of carbon that’s in the atmosphere. Floods are a big problem in cities, both because of the way we’ve made our cities and because of the way cities have changed the atmosphere. I mean, there’s the basic climate change fact that the atmosphere has a lot more carbon dioxide in it and other greenhouse gases than it did before. Those holding the heat, the warmer air holds more water and has more energy. And so that creates larger storms. So there’s that. One thing I think a lot about is we tend to forget that we make a lot of choices about how we live in the city. So there’s a sort of lifestyle aspect to this, as well as a sort of urban planning aspect to it, if you like. And I think we could do a lot more on the lifestyle side. Some of that is just coming to this expectation that, yes, there’s going to be flooding in our cities and another ecosystems, right? These things are not going away anytime soon. So we just need to, like, reset, maybe, our expectation that we can build pipes large enough to handle all the water and that, you know, despite whatever the conditions are, if it’s pouring rain, maybe you can’t go outside, or maybe you can’t do something that you were able to do before. So that’s one thing. A second one is to sort of think about those sort of lifestyle choices in terms of all the things you need to do about them. Flooding, about where the water goes, that’s in conversation with where the cars go and where people go. So the transportation networks. There’s some clever ideas there. If you look at the New York City streets now, they’re designed with this bend, so they’re higher in the middle so that the water sheets off toward the gutters on the side. But there’s been some experiments in cities around the world to build them the other way, lower in the middle, and the water comes in. And so basically when there’s a flood, you close the road. And for the short period of time, that road is a stream. Not traffic. It’s a stream. And it turns out that some of our roads are on old streams. And so that kind of solution could work. So these are quite clever things that you can do. Klimek: How would it benefit people to take that into account, to start to think more ecologically and adjust our expectations? How would we ultimately benefit from this? Sanderson: Well, in the near term, we won’t die, right? Like we won’t drown, and we won’t lose our stuff, and we won’t have the social unrest that arises from those bad things. But to sort of turn around in a positive mode at some level, I think this is what life is for, right? Knowing how to live here on Earth with the nature that we have. It’s that kind of deep-seated understanding and desire to be the best person I can be in this amazing, amazing planet that we have that has led my whole career in conservation. Klimek: Eric Sanderson is the vice president of urban conservation for the New York Botanical Garden. He is also the author of Mannahatta: A Natural History of New York City, which is an ecological history of Manhattan Island. Thank you, Dr. Sanderson, for talking with us. Sanderson: Terrific. Thank you so much, Chris. Klimek: To hear more from Eric Sanderson, subscribe to NYBG’s brand new podcast, which is called “Plant People.” We’ll put a link in our show notes along with links to more resources, including Xander Peters’ Smithsonian article about the Ike Dike.Klimek: Before we let you go, let’s give you one last dinner party fact to tide you over as we wrap up our season. Ted Scheinman: I’m Ted Scheinman. I’m a senior editor here at Smithsonian magazine, and I recently edited a great piece by our frequent contributor Richard Grant about Akito Kawahara, who is a butterfly scientist at the University of Florida. And Kawahara’s recent research has changed our understanding of butterflies in major ways. He has traced the evolution of butterflies directly from moths. Butterflies became butterflies when they became day-flying, essentially. But a really curious and, to me, sort of funny wrinkle here is that some of those butterflies who escaped the night and became day-flying, then evolved back into being night fliers and into essentially being moths again, which I can’t help but consider a sort of step backward, like moving back in with your parents or something. But it goes to show you that, you know, evolution is not, you know, directional. And it always brings up some crazy stuff.Klimek: I hope you liked this season of “There’s More of That.” We did something new for us, and we hope that our episodes gave you a sense of what the world of Smithsonian magazine is all about. We’d love to hear from you about how the season was and, more importantly, what you want to hear more of. We’re taking time between seasons to make the show even better. Having your help is key. So if you have the time to help us design our future episodes, please take this survey. You can find it at SmithsonianMag.com/podcastsurvey. It should take about five minutes. “There’s More to That” is a production of Smithsonian magazine and PRX Productions. From the magazine. Our team is me, Debra Rosenberg and Brian Wolly. From PRX, our team is Jessica Miller, Genevieve Sponsler, Adriana Rozas Rivera, Ry Dorsey and Edwin Ochoa. The executive producer of PRX Productions is Jocelyn Gonzales. Our episode artwork is by Emily Lankiewicz. Fact-checking by Stephanie Abramson. Our music is from APM Music. I’m Chris Klimek. Thank you for listening. Get the latest Science stories in your inbox.

A massive project prompted by the wildly destructive Hurricane Ike offers a solutions-based preview of our climate future

Smithmag-Podcast-S02-Ep13-Hurricane-article.jpg
Illustration by Emily Lankiewicz / Images via public domain / Library of Congress / FEMA / NASA / Carl & Ann Purcell / Getty Images

After Hurricane Ike destroyed thousands of homes and inflicted an estimated $30 billion in damages in 2008, engineers hatched an ambitious plan to protect southeast Texas and its coastal refineries and shipping routes from violent storms. The $34 billion collaboration spearheaded by the U.S. Army Corps of Engineers is a harbinger of the type of massive public works projects that could be required to protect coastal cities like New York and Miami as sea levels rise and hurricanes become less predictable and more severe due to climate change.

In this episode of “There’s More to That,” Smithsonian magazine contributor and Texas native Xander Peters reflects on his experiences growing up in a hurricane corridor and tells us how the wildly ambitious effort came together. Then, Eric Sanderson, an ecological historian, tells us how the project could be applied to other low-lying coastal cities.

A transcript is below. To subscribe to “There’s More to That,” and to listen to past episodes on how a new generation of high-end West African restaurants is revealing the roots of “Southern” cuisine, why Colombian conservationists are now trying to sterilize the hippos descended from drug kingpin Pablo Escobar’s personal menagerie, what humans’ great acumen for sweating has contributed to our evolution and more, find us on Apple Podcasts, Spotify or wherever you get your podcasts.


Chris Klimek: What part of Texas are you from?

Xander Peters: I’m over here in East Texas. We’re about 30 miles from the Louisiana border.

Klimek: Xander Peters is a contributor to Smithsonian magazine.

Peters: It’s a real small town, about 2,000 people.

Klimek: What’s life like there?

Peters: As a 33-year-old single guy? Kind of boring at times, but it’s home, you know. Not a lot of people move here, but not a lot of people leave, either. So maybe that speaks for itself.

Klimek: What’s the geography like?

Peters: It’s marshy. It’s wet. We’re kind of the last stretch of the Louisiana swamp, as we all know it. So it’s a wet, humid, difficult place at times.

Klimek: One of the constants in Xander’s life growing up in East Texas was hurricanes.

Peters: The most memorable was in 2005. Hurricane Rita pretty much was a direct impact to the region. I think it was my freshman year of high school. The power was out for three or four weeks. Society literally shut down. It was hard to get gas. You couldn’t really get groceries. Of course, there was Hurricane Harvey in 2017, and the list goes on. But it’s a fact of life here.

Klimek: This area has already been impacted by hurricanes this summer, and there may be more to come. In July, Hurricane Beryl left millions without power in the dangerously high heat, leading to more than 20 deaths. Local officials can’t prevent these big storms, but they can try to prevent the damage, which is why one of the most ambitious and expensive infrastructure projects in the country is in progress, right there along the Galveston coast. But will it be enough to prevent loss of property and life? Or do we need an entirely different way of thinking?

From Smithsonian magazine and PRX Productions, this is “There’s More to That,” the show that’s glad to be your nerdy listening alternative to the song of the summer. In this episode, we learn about the so-called Ike Dike going up in East Texas, as well as alternative flood prevention efforts that rely on nature itself. I’m Chris Klimek.


Klimek: In the July/August issue of Smithsonian magazine, Xander Peters wrote about a place just a short drive from his hometown: the Bolivar Peninsula.

Peters: It’s hard to imagine a more vulnerable geographic location than Bolivar Peninsula. It’s almost totally surrounded by water, so when a storm surge comes, it comes in nearly every direction.

Klimek: What’s this region’s history with big storms?

Peters: It’s hard to talk about southeast Texas without talking about its storms. It’s defined not just every generation, but every decade. Going back to the Galveston Storm of 1900, which claimed the most fatalities of any American natural disaster. We had Harvey in 2017, which was catastrophic flooding. The list goes on. At this point, I have mixed up the more recent names. I feel like, you know, your grandmother kind of does a roll call of all the children in the family. That’s how I feel about hurricanes now.

Klimek: The biggest storm in Xander’s recent memory was 2008’s Hurricane Ike.

Peters: We’d never seen the kind of storm surge result from a hurricane as we saw from Ike. And after that storm, it actually changed the way the National Hurricane Center conducts analysis and gives insight ahead of event into a storm surge. And, really, our broader understanding of what creates the disaster aspect of this kind of natural disaster.

Klimek: Was it forecasted to be as catastrophic as it was?

Peters: We knew it was going to be bad. It was a mandatory evacuation for, I think, even up to my region in East Texas, about 100 miles north of the coast. So we knew it was going to be bad. We at first thought it was going to be a direct hit to the Houston shipping channel, which is all kinds of bad news. We’re looking at $900 billion of goods that go up and down, much of which is oil and gas related, up and down the Houston shipping channel every year. We have the world’s largest petrochemical corridor. And if it’s a fuel, if it’s a gas, it’s being refined there. It’s being made there somehow. And then it’s going to faraway places like Europe.

But we got lucky. It missed the shipping channel by about two miles, and it hit around Galveston and Bolivar instead. So Bolivar was not so lucky. But in terms of the larger human toll, very lucky. Because if a storm surge hits the Houston shipping channel directly, we could be looking at a Chernobyl-like event, just given some of the refining capacity across the region.

Klimek: What did it look like there on the peninsula after Ike?

Peters: There was nothing left. Sixty to 80 percent of the structures were gone. You look at Highway 87, which stretches down pretty much the entire span of the peninsula, and [it was covered in] one or two feet of sediment and mud. There were cattle carcasses, alligator carcasses. There were snakes and rats running wild, confused. There were laundry machines scattered everywhere. There was twisted metal, broken telephone poles, everything in a million huge piles.

Klimek: In your story, you mentioned a smell that was very particular.

Peters: Yeah. Death lingered for months. I mentioned the cattle carcasses, and there are human carcasses in some places. And all the grasses and the stuff in people’s houses was molding and rotting, and there’s just every foul smell you can imagine. I’m not a military veteran. I’ve never fought in a war. But I can imagine that’s what a battlefield would smell like, you know?

Klimek: For more than 100 years, people in the area have been trying to prevent storm surges like this one.

Peters: After the Galveston Storm in 1900, they built a kind of state-of-the-art seawall, which has been raised a couple times, if I’m not mistaken, over the last century or so. It was commissioned only a few years after the storm. Meanwhile, you look at Bolivar Peninsula, it has none of those same infrastructure protections.

Klimek: So how did the idea of the Ike Dike come together?

Peters: A lot of arguing.

Klimek: The Ike Dike is the informal name for the massive infrastructure project that officials are betting the future of the Bolivar Peninsula on. Officially called the coastal Texas project, it involves three dozen sea gates leading up to the Houston shipping channel, and large concrete floodwalls to reinforce the city of Galveston. With a $34 billion price tag, it’s being overseen by the Army Corps of Engineers, but it was first envisioned by a local researcher.

Peters: Dr. William Merrell. He’s a professor at Texas A&M Galveston, and he’s a marine scientist. He and his wife are also investors in some of the antique architecture across Galveston. As Ike blew in, he came up with a concept that was a barrier system around Galveston that would open and close ahead of events such as Ike. He sat down that evening, as the lights remained out, and started sketching out some of the first designs of what the federal government will break ground on in the coming months—after some 16 years.

Klimek: Part of the delay came from the controversial nature of the project. Critics argued the Ike Dike would do irreparable damage to the environment, that it was too complex to work and that it was too expensive. Several different groups submitted their own plans. But after local officials asked Congress to step in, the Army Corps of Engineers was put in charge. Federal help comes with federal money.

Klimek (to Peters): Who’s funding this, and what kind of money are we talking about?

Peters: Sixty-five percent is coming from the federal government. Texas will pick up the remaining 35 percent. Only about $500,000 of that’s been allocated so far. But the Army Corps says accounting for inflation and everything else that threw it off the end of the project, we’re probably looking at something close to $55 billion. And I wouldn’t be surprised if it’s higher than that.

Klimek: All right. So, assuming all this investment buys what we hope it does, how is the dike intended to protect Galveston from storm surges? How will it work?

Peters: The whole idea is to stop the water at the sea, not let the water get into the Houston Ship Channel, which causes flooding all the way across it. So essentially, it’s a big gate that, in theory, will stop this huge wall of water as it surges toward the coast ahead of hurricane events like Ike and other ones. It draws on a Dutch flood theory, and the Dutch have some of the earliest forms of flood mitigation systems. Nothing like this has ever been even attempted in the U.S. Not at this scale, not with these high of stakes. It’s a new defining of how not just the federal government, but state governments as well, are going to approach building our way out of the climate crisis.

Klimek: How will the gate-and-ring system work?

Peters: Twenty-four to 48 hours ahead of a storm surge event, the alerts start going out, and they start moving some of the first ships out of the Houston Ship Channel. And, essentially, they have to hit that button to close the two main gates at the right time so that not too much water gets past it as the storm surge begins coming in in the 12 or 18 hours ahead of a hurricane. When I think of the Ike Dike gates closing, I think of, like, Indiana Jones when the stone rolls out of the cave after him, in terms of what these massive walls will look like moving toward each other.

Klimek: How will the Ike Dike incorporate natural storm barriers like sand dunes?

Peters: There along Bolivar Peninsula, we’re going to see a massive dune system. I think it was 12- to 14-foot dunes with a swale between them. That is going to line the stretch between Highway 87 and the beachfront. And that’s just piling sediment and sand on top of each other to create a wall. That’s nothing different than what the tides have done themselves, except to a much, much, much larger degree. And then in other places, we’re going to see wetlands restoration, which helps buffer storm surge from the coast. I think it was 6,600 acres of wetlands restoration or remediation for similar marshlands. So it’s equally significant — the natural restoration process — as much as the engineering phase of the project.

Klimek: What kind of concerns have environmentalists raised about the coastal Texas project?

Peters: Rightful ones, actually. It’s to be expected when you essentially inject these enormous concrete structures into ecosystems. Over the last 50 years in the Netherlands, environmental researchers have noticed changes to ecosystems, sediment patterns being shifted around. And that’s the same concern that we’re seeing on the Texas coast. These are unprecedented actions. A lot of this project is operating on hypothesis and theory. We probably can expect to see some ecological changes along the Texas coast as a result of it long term.

Klimek: So how does what they’re trying to do in Galveston reflect how we’re responding nationally to increasingly severe storms and floods?

Peters: I guess we’re paying attention now. It took a long time to get to this point. We’re approaching the 16-year anniversary of Ike, and you look at the Houston Ship Channel. You look at Bolivar and the months after Ike. It’s a pretty convincing argument. And over the years, we’ve seen the same argument made over and over. It’s very slow-moving, and I feel it’s very difficult to respond to a fast-moving crisis with a slow-moving solution, but it seems to be the best we have.


Klimek: For more context on floods and their potential solutions, we reached out to an expert.

Eric Sanderson: Hi everyone, I’m Dr. Eric Sanderson. I’m the vice president for urban conservation at the New York Botanical Garden. I live and work in New York City, and I’ve studied the historical ecology of New York for many years.

Klimek: Eric recently spoke about flooding on New York Botanical Garden’s new podcast, “Plant People.” And while New York City may be far from Houston, it faces many of the same challenges.

Sanderson: I was here during Hurricane Sandy, and I was here during Hurricane Ida. And after Sandy, I made this map that showed that the areas that flooded during Sandy were more or less where the tidal marshes were around the city. And I showed that around. And at the time, a lot of people are like, oh, well, that’s kind of interesting. But I guess that makes sense. Those would be the lowest places, right? But then Hurricane Ida happened in 2021, and Hurricane Ida was not a coastal storm, but an intense rainstorm. And what re-emerged were the upland streams and wetlands and ponds and places that people weren’t expecting. I made a map there, kind of compared that, and I started talking about it, and I wrote a little thing that was in the New York Times that just made the case that the water is going to go where the water is going to go, and that’s going to be downhill, and that’s going to be where the old streams were.

Klimek: Eric does a lot of work with historic maps. He overlays the original topography of a place with the city we know now to reveal where the rivers, lakes, streams and marshes used to be. Often these are the very same places that flood during storms.

Sanderson: We call those areas “blue zones,” and they cover some 20 percent of New York City. Places where about a million people live.

Klimek: So you’re saying that some of the flooding resulting from Hurricane Ida happened in surprising places, places that were not predicted to flood?

Sanderson: Yes. Basements were flooded. And it turns out that a lot of those places were former wetlands or ponds or streams. Because when we build, the city will fill in the wetland. But it’s actually hard to raise the topography high enough that you divert the direction of the water. The water goes where the water has always gone.

Klimek: Eric says some of the best examples can be found in our nation’s airports.

Sanderson: Think about where JFK Airport is, or LaGuardia Airport, in New York. JFK Airport is built on a big salt marsh. The Great Haystack, as it was called. LaGuardia is actually built in Bowery Bay. It was built in a bay! They filled in the bay, and they built the airport. And why is that? Why did they do that? It’s because by the time we decided we wanted commercial aviation in the late ’20s and 1930s, most of the upland had been built on, right?

And so, you know, you weren’t going to, like, clear Flatbush in order to build an airport. What the city did is they took whatever they had, which was the near-coastal zone, and they filled it in. That’s what LaGuardia [is]. And that’s what we did for JFK, and that’s Newark Airport. But that’s also, you know, Reagan Airport in D.C., and that’s also SFO in San Francisco and the Oakland Airport and practically every airport in a coastal city. And it’s because of the relationship of when that technological economic activity developed in the historical projection of the city. It’s fascinating.

Klimek: Are there specific human populations most likely to be affected by floods?

Sanderson: Yeah. Well, everybody who’s in a low spot. It turns out, of course, that those places have been wet for a long time. Many of them were less desirable. And there’s two consequences of that: One is that they’re disproportionately in public hands, still. So there are places where schools are, where public housing is, where parks are. Because those places were less desirable for private development in the past. And so they tended to stay in the public sphere. The other sort of important factor is poor people. You know, people with less power and less financial capacity tend to go to the places that are more affordable and in some sense have been, you know, shunted by the various systematic mechanisms. You know, redlining and these sorts of things tend to push people into certain precincts of the city. It just turns out that some of those precincts of the city were formerly wetlands, and then those former wetlands are starting to flood again. We did an analysis of our blue zones against environmental justice areas of the city. And about a third of the blue zones overlap with areas that are identified as environmental justice communities.

Klimek: Our magazine story about flooding is largely set in Houston, which, you know, in recent days as we’re speaking has been hit by Hurricane Beryl-related flooding. But this obviously has been a problem there for decades, considering that Houston, too, was built on a swamp. Why are so many of our major U.S. cities built on floodplains?

Sanderson: They weren’t built to destroy swamps, per se. It’s more, if you think about where it’s a good place to put a city, there’s sort of four factors. One is that there is food. So you have to have agricultural land nearby, and you need water. You need fresh water, right? You also want to be on a trade route. So that means cities like to be on the coast, or on major rivers, or some way of moving stuff around. And the fourth one is defense. A lot of cities were founded at a time where, you know, you had to worry about other people. So they’re often in defensive places. It’s maybe worth saying, Chris, that once a city is established, the next best place to put a city is right beside the city you already have. Once you have that core, then they tend to grow out sort of radially from them.

Klimek: So in Houston, the so-called Ike Dike, this massive infrastructure project—I want to ask how you feel about these kinds of large-scale solutions. Is there a limit to what can be achieved with these kinds of massive infrastructure projects?

Sanderson: I can’t speak specifically to the details of Houston, but there’s similar sorts of things proposed here in New York. And what I would just say is, I don’t think you can solve the problem with the same kind of thinking that created it in the first place.

There was this idea that developed during the Enlightenment, and was expressed through the Industrial Age and into the 20th century, that we could basically control nature. That we were smarter and more powerful than nature is. And the consequences of that are that we have radically changed the atmospheric composition of the Earth in such a way that it’s holding in more energy and creating these storms. So there’s that. And then, you know, we thought, “We can build on a beach, we can build on a wetland. We’ll just fill it in; it’ll be fine.” But we didn’t anticipate sea-level rise and climate change and more severe storms. And so I really think this is a moment where we need a different way of thinking and another kind of wisdom.

Klimek: What would a more comprehensive long-term solution for a coastal city, whether it’s Houston or New York, what would that look like if we had some way to address all of this pre-existing construction, and the fact that we’re having to interpolate centuries of prior development? If we could somehow put that aside and just think about the future, what would you do?

Sanderson: So I would take the historical lesson, which is that we’ve overbuilt in some places, we built in places that we shouldn’t have. And so, what should we do? I think there are some places where we need to invest in nature instead of more infrastructure. I think it’s actually the reverse thing. Don’t build a giant wall; build a giant park. Don’t build a new storm drain; build a stream. Don’t build another massive retention pond that you don’t know how big to make it; build a wetland that knows how to adapt to changing conditions.

And that’s hard, because it means that it just isn’t a problem of the neighborhoods that are flooding. It’s also a problem of the upland areas that aren’t flooding. If a million people need to move, and we need to build another million housing units in safer places—and probably more to help with the housing affordability and other things, right? This is what I mean. It challenges us at many levels. It challenges us in terms of the wisdom to know what to do as an individual person or individual family, but it also challenges our social structures. We need to have a mechanism to try and work that out, and then we need to restore the nature that we destroyed, and that will save us.

Klimek: Do plants have a role to play in addressing some of the problems we’re having with flooding?

Sanderson: Planting really is the key here. And that’s what I mean by restoring nature from a water perspective. When you see a tree, you should think of a straw. You have this organism that has these roots that are going down into the ground, and they’re pulling the water out and they’re putting it back in the atmosphere. The traditional way of managing water in the city is to build pipes and infrastructures that replace the streams, right? And then take it to the water treatment plants. That’s sort of this one way of managing water. And the goal is to get rid of it as fast as possible. Nature’s way is: There’s many routes that water can take. Water can run down a stream, but it can also percolate into the ground and into the aquifer. Or it can evaporate or evapotranspiration through trees and up into the atmosphere, right? It has multiple pathways to go.

So these are all sorts of lessons out of ecology that we can apply with plants to make flooding better. More trees is going to help with interception. It’s going to help with groundwater flows, and it’s going to help with evapotranspiration. More wetland plants is going to help with slowing the water, holding the water and providing habitat for other organisms that use that water. Nature’s been at this for a long time. Like, it really has a lot of great tricks that we can lean into in a way that can make our lives better, too.

Klimek: Eric spoke about another innovative solution called “stream daylighting.” Most of the small streams that used to exist in the landscape have been forced underground, rerouted into pipes or otherwise covered by our urban infrastructure. Daylighting restores the streams, bringing them back up to the surface.

Sanderson: Here in New York City, there’s this fascinating story on Staten Island that when Staten Island was developing, there was this moment where they were about to spend a lot of money on their sewage infrastructure. And then someone said, well, why don’t we put some of that money into just restoring the streams? And then the streams can help with the stormwater. We can do some adaptations. We can build some ponds and things to help hold a little bit more water in the system. And then the sewage system can just deal with the sewage and not have to deal with the stormwater.

But then there’s other things that are being invented, like a green roof. You know, a green roof actually slows the water down. And it used to be that our green roofs, you know, were pretty shallow. But there’s been a lot of experimentation. I was slightly involved with a project that Google built in New York, where they took an old industrial building that was strong enough that they used to drive trains into this building, like locomotives, at the end of the High Line. It’s now an office building, and they popped up the middle of it to create the office structures, and then they put green roofs on them, and those green roofs could hold enough weight that they can have trees on them. Trees and shrubs and plants. And then they planted them with 95 percent native plants. So they’re doing the water thing and they’re doing the biodiversity thing at the same time. It’s a really beautiful project, and an acre and a half of habitat on the West Side of Manhattan. Incredible.

Klimek: The solutions to flooding as a result of coastal surges—are those different from rainfall-induced flooding, or do we address them in the same way?

Sanderson: We have to address them in different kinds of ways, because the coastal storm surge, that’s the sea level. And then the waves that are being driven by a storm. And so that’s really about, in my view, dunes and beaches and maybe oyster reefs to help break that energy of the storm water and then salt marshes to help absorb it.

If it’s an intense rainfall, I think that’s about streams and wetlands and interior modifications giving the water someplace to go. The problem is that you could try and solve one and mess up the other. I think this is why the engineers are so interested in this problem, and they can design something if you tell them what to design for. It’s easy to do the design, but then to miss the specification by a little bit.

Remember during Hurricane Sandy when there was that famous photograph of Lower Manhattan being all dark? That’s because the flood took out a power plant that was on the East Side of Manhattan. There was on a little hill beside an old salt marsh. It was designed to be 12 feet above the tide, and that storm surge was 14 feet. So it was just two feet over. You know, like, if they designed it at 14 or 16 feet or would have been OK. When they built that thing, nobody knew exactly what it was. You’re taking a guess. You’re sort of rolling the dice. Natural systems are adaptive on their own.

So it’s not like there’s a design blueprint for nature that says, this is exactly what it’ll do. Nature’s a little bit more adaptable, and it can do kind of different sorts of things. And I think that’s a strength in the long run. But it makes people uncertain in the short run.

Klimek: Are there any other solutions we haven’t gotten to yet, either in New York City or other cities, approaches to addressing flooding that you find worthy of exploration?

Sanderson: We didn’t mention specifically things like bioswales, which are sort of like a small little version of a forest or a little wetland on the side of a street. There’s this idea of permeable pavers, you know, allowing water to get to the ground. Essentially, we’ve covered our cities in stone because we don’t like mud. Essentially, we’ve paved over the city, and our buildings are built in these hard materials, which are like stone and glass and so forth. And so that’s why the water sheets off of it.

And, you know, anybody can do this experiment. You just take a bucket of water and go outside and pour it on a rock and watch how fast the water comes off. And then you pour it on the adjacent soil and you’ll see how fast it infiltrates to the ground and doesn’t run off. And so we’ve hardened the city. Anything we can do to soften the city that way, to expose the soil, it’s going to help us with water. I think the only thing to say about that, of course, is that, you know, in the historical conditions, when it was a forest, the water that was in the ground would either eventually emerge in a spring and a stream or go down into the aquifer and then out into the ocean.

Now we have other stuff that’s also on the ground, like the subway system and like all the electrical wires, and all the plumbing. So it’s a little bit more complicated. There’s a lot of work in cities to put water in the ground, and I totally understand why. But if you’re ever in New York City on a rainy day, it’s raining above the ground and it’s raining below the ground, in the subway system. Water is single-minded like this. It just wants to go downhill.

Klimek: It sounds like we really need to think about more than just rerouting water to solve some of these problems that coastal cities are experiencing. What are the opportunities that we could open up by thinking about more than just moving excess water from one place to another place?

Sanderson: Well, I think we need to think about the mitigation side. Of course, everything we’ve talked about adapting to flooding doesn’t mean we don’t have to do something about trying to decrease the amount of carbon that’s in the atmosphere. Floods are a big problem in cities, both because of the way we’ve made our cities and because of the way cities have changed the atmosphere. I mean, there’s the basic climate change fact that the atmosphere has a lot more carbon dioxide in it and other greenhouse gases than it did before. Those holding the heat, the warmer air holds more water and has more energy. And so that creates larger storms. So there’s that.

One thing I think a lot about is we tend to forget that we make a lot of choices about how we live in the city. So there’s a sort of lifestyle aspect to this, as well as a sort of urban planning aspect to it, if you like. And I think we could do a lot more on the lifestyle side. Some of that is just coming to this expectation that, yes, there’s going to be flooding in our cities and another ecosystems, right? These things are not going away anytime soon. So we just need to, like, reset, maybe, our expectation that we can build pipes large enough to handle all the water and that, you know, despite whatever the conditions are, if it’s pouring rain, maybe you can’t go outside, or maybe you can’t do something that you were able to do before. So that’s one thing.

A second one is to sort of think about those sort of lifestyle choices in terms of all the things you need to do about them. Flooding, about where the water goes, that’s in conversation with where the cars go and where people go. So the transportation networks. There’s some clever ideas there. If you look at the New York City streets now, they’re designed with this bend, so they’re higher in the middle so that the water sheets off toward the gutters on the side. But there’s been some experiments in cities around the world to build them the other way, lower in the middle, and the water comes in. And so basically when there’s a flood, you close the road. And for the short period of time, that road is a stream. Not traffic. It’s a stream. And it turns out that some of our roads are on old streams. And so that kind of solution could work. So these are quite clever things that you can do.

Klimek: How would it benefit people to take that into account, to start to think more ecologically and adjust our expectations? How would we ultimately benefit from this?

Sanderson: Well, in the near term, we won’t die, right? Like we won’t drown, and we won’t lose our stuff, and we won’t have the social unrest that arises from those bad things. But to sort of turn around in a positive mode at some level, I think this is what life is for, right? Knowing how to live here on Earth with the nature that we have. It’s that kind of deep-seated understanding and desire to be the best person I can be in this amazing, amazing planet that we have that has led my whole career in conservation.

Klimek: Eric Sanderson is the vice president of urban conservation for the New York Botanical Garden. He is also the author of Mannahatta: A Natural History of New York City, which is an ecological history of Manhattan Island. Thank you, Dr. Sanderson, for talking with us.

Sanderson: Terrific. Thank you so much, Chris.

Klimek: To hear more from Eric Sanderson, subscribe to NYBG’s brand new podcast, which is called “Plant People.” We’ll put a link in our show notes along with links to more resources, including Xander Peters’ Smithsonian article about the Ike Dike.


Klimek: Before we let you go, let’s give you one last dinner party fact to tide you over as we wrap up our season.

Ted Scheinman: I’m Ted Scheinman. I’m a senior editor here at Smithsonian magazine, and I recently edited a great piece by our frequent contributor Richard Grant about Akito Kawahara, who is a butterfly scientist at the University of Florida. And Kawahara’s recent research has changed our understanding of butterflies in major ways. He has traced the evolution of butterflies directly from moths. Butterflies became butterflies when they became day-flying, essentially. But a really curious and, to me, sort of funny wrinkle here is that some of those butterflies who escaped the night and became day-flying, then evolved back into being night fliers and into essentially being moths again, which I can’t help but consider a sort of step backward, like moving back in with your parents or something. But it goes to show you that, you know, evolution is not, you know, directional. And it always brings up some crazy stuff.


Klimek: I hope you liked this season of “There’s More of That.” We did something new for us, and we hope that our episodes gave you a sense of what the world of Smithsonian magazine is all about. We’d love to hear from you about how the season was and, more importantly, what you want to hear more of. We’re taking time between seasons to make the show even better. Having your help is key. So if you have the time to help us design our future episodes, please take this survey. You can find it at SmithsonianMag.com/podcastsurvey. It should take about five minutes.

“There’s More to That” is a production of Smithsonian magazine and PRX Productions.

From the magazine. Our team is me, Debra Rosenberg and Brian Wolly.

From PRX, our team is Jessica Miller, Genevieve Sponsler, Adriana Rozas Rivera, Ry Dorsey and Edwin Ochoa. The executive producer of PRX Productions is Jocelyn Gonzales.

Our episode artwork is by Emily Lankiewicz. Fact-checking by Stephanie Abramson. Our music is from APM Music.

I’m Chris Klimek. Thank you for listening.

Get the latest Science stories in your inbox.

Read the full story here.
Photos courtesy of

Coalmine expansions would breach climate targets, NSW government warned in ‘game-changer’ report

Environmental advocates welcome Net Zero Commission’s report which found the fossil fuel was ‘not consistent’ with emissions reductions commitments Sign up for climate and environment editor Adam Morton’s free Clear Air newsletter hereGet our breaking news email, free app or daily news podcastThe New South Wales government has been warned it can no longer approve coalmine developments after the state’s climate agency found new expansions would be inconsistent with its legislated emissions targets.In what climate advocates described as a significant turning point in campaigns against new fossil fuel programs, the NSW Net Zero Commission said coalmine expansions were “not consistent” with the state’s legal emissions reductions commitments of a 50% cut (compared with 2005 levels) by 2030, a 70% cut by 2035, and reaching net zero by 2050.Sign up to get climate and environment editor Adam Morton’s Clear Air column as a free newsletter Continue reading...

The New South Wales government has been warned it can no longer approve coalmine developments after the state’s climate agency found new expansions would be inconsistent with its legislated emissions targets.In what climate advocates described as a significant turning point in campaigns against new fossil fuel programs, the NSW Net Zero Commission said coalmine expansions were “not consistent” with the state’s legal emissions reductions commitments of a 50% cut (compared with 2005 levels) by 2030, a 70% cut by 2035, and reaching net zero by 2050.The commission’s Coal Mining Emissions Spotlight Report said the government should consider the climate impact – including from the “scope 3” emissions released into the atmosphere when most of the state’s coal is exported and burned overseas – in all coalmine planning decisions.Environmental lawyer Elaine Johnson said the report was a “game-changer” as it argued coalmining was the state’s biggest contribution to the climate crisis and that new coal proposals were inconsistent with the legislated targets.She said it also found demand for coal was declining – consistent with recent analyses by federal Treasury and the advisory firm Climate Resource – and the state government must support affected communities to transition to new industries.“What all this means is that it is no longer lawful to keep approving more coalmine expansions in NSW,” Johnson wrote on social media site LinkedIn. “Let’s hope the Department of Planning takes careful note when it’s looking at the next coalmine expansion proposal.”The Lock the Gate Alliance, a community organisation that campaigns against fossil fuel developments, said the report showed changes were required to the state’s planning framework to make authorities assess emissions and climate damage when considering mine applications.It said this should apply to 18 mine expansions that have been proposed but not yet approved, including two “mega-coalmine expansions” at the Hunter Valley Operations and Maules Creek mines. Eight coalmine expansions have been approved since the Minns Labor government was elected in 2023.Lock the Gate’s Nic Clyde said NSW already had 37 coalmines and “we can’t keep expanding them indefinitely”. He called for an immediate moratorium on approving coal expansions until the commission’s findings had been implemented.“This week, multiple NSW communities have been battling dangerous bushfires, which are becoming increasingly severe due to climate change fuelled by coalmining and burning. Our safety and our survival depends on how the NSW government responds to this report,” he said.Net zero emissions is a target that has been adopted by governments, companies and other organisations to eliminate their contribution to the climate crisis. It is sometimes called “carbon neutrality”.The climate crisis is caused by carbon dioxide and other greenhouse gases being pumped into the atmosphere, where they trap heat. They have already caused a significant increase in average global temperatures above pre-industrial levels recorded since the mid-20th century. Countries and others that set net zero emissions targets are pledging to stop their role in worsening this by cutting their climate pollution and balancing out whatever emissions remain by sucking an equivalent amount of CO2 out of the atmosphere.This could happen through nature projects – tree planting, for example – or using carbon dioxide removal technology.CO2 removal from the atmosphere is the “net” part in net zero. Scientists say some emissions will be hard to stop and will need to be offset. But they also say net zero targets will be effective only if carbon removal is limited to offset “hard to abate” emissions. Fossil use will still need to be dramatically reduced.After signing the 2015 Paris agreement, the global community asked the Intergovernmental Panel on Climate Change (IPCC) to assess what would be necessary to give the world a chance of limiting global heating to 1.5C.The IPCC found it would require deep cuts in global CO2 emissions: to about 45% below 2010 levels by 2030, and to net zero by about 2050.The Climate Action Tracker has found more than 145 countries have set or are considering setting net zero emissions targets. Photograph: Ashley Cooper pics/www.alamy.comThe alliance’s national coordinator, Carmel Flint, added: “It’s not just history that will judge the government harshly if they continue approving such projects following this report. Our courts are likely to as well.”The NSW Minerals Council criticised the commission’s report. Its chief executive, Stephen Galilee, said it was a “flawed and superficial analysis” that put thousands of coalmining jobs at risk. He said some coalmines would close in the years ahead but was “no reason” not to approve outstanding applications to extend the operating life of about 10 mines.Galilee said emissions from coal in NSW were falling faster than the average rate of emission reduction across the state and were “almost fully covered” by the federal government’s safeguard mechanism policy, which required mine owners to either make annual direct emissions cuts or buy offsets.He said the NSW government should “reflect on why it provides nearly $7m annually” for the commission to “campaign against thousands of NSW mining jobs”.But the state’s main environment organisation, the Nature Conservation Council of NSW, said the commission report showed coalmining was “incompatible with a safe climate future”.“The Net Zero Commission has shone a spotlight. Now the free ride for coalmine pollution has to end,” the council’s chief executive, Jacqui Mumford, said.The state climate change and energy minister, Penny Sharpe, said the commission was established to monitor, report and provide independent advice on how the state was meeting its legislated emissions targets, and the government would consider its advice “along with advice from other groups and agencies”.

Nope, Billionaire Tom Steyer Is Not a Bellwether of Climate Politics

What should we make of billionaire Tom Steyer’s reinvention as a populist candidate for California governor, four years after garnering only 0.72 percent of the popular vote in the 2020 Democratic presidential primary, despite obscene spending from his personal fortune? Is it evidence that he’s a hard man to discourage? (In that race, he dropped almost $24 million on South Carolina alone.) Is it evidence that billionaires get to do a lot of things the rest of us don’t? Or is it evidence that talking about climate change is for losers and Democrats need to abandon it?Politico seems to think it’s the third one: Steyer running a populist gubernatorial campaign means voters don’t care about global warming.“The billionaire environmental activist who built his political profile on climate change—and who wrote in his book last year that ‘climate is what matters most right now, and nothing else comes close’—didn’t mention the issue once in the video launching his campaign for California governor,” reporter Noah Baustin wrote recently. “That was no oversight.” Instead, “it reflects a political reality confronting Democrats ahead of the midterms, where onetime climate evangelists are running into an electorate more worried about the climbing cost of electricity bills and home insurance than a warming atmosphere.”It’s hard to know how to parse a sentence like this. The “climbing cost of electricity bills and home insurance” is, indisputably, a climate issue. Renewable energy is cheaper than fossil fuels, and home insurance is spiking because increasingly frequent and increasingly severe weather events—driven by climate change—are making large swaths of the country expensive or impossible to insure. The fact that voters are struggling to pay for utilities and insurance, therefore, is not evidence that they don’t care about climate change. Instead, it’s evidence that climate change is a kitchen table issue, and politicians are, disadvantageously, failing to embrace the obviously populist message that accompanies robust climate policy. This is a problem with Democratic messaging, not a problem with climate as a topic.The piece goes on: “Climate concern has fallen in the state over time. In 2018, when Gov. Gavin Newsom was running for office, polling found that 57 percent of likely California voters considered climate change a very serious threat to the economy and quality of life for the state’s future. Now, that figure is 50 percent.”This may sound persuasive to you. But in fact, it’s a highly selective reading of the PPIC survey data linked above. What the poll actually found is that the proportion of Californians calling climate change a “very serious” threat peaked at 57 percent in 2019, fell slightly in subsequent years, then fell precipitously by 11 points between July 2022 and July 2023, before rising similarly precipitously from July 2024 to July 2025. Why did it fall so quickly from 2022 to 2023? Sure, maybe people stopped caring about climate change. Or maybe instead, the month after the 2022 poll, Congress passed the Inflation Reduction Act, the most significant climate policy in U.S. history, and people stopped being quite so worried. Why did concern then rise rapidly between July 2024 and July 2025? Well, between those two dates, Trump won the presidential election and proceeded, along with Republicans in Congress, to dismantle anything remotely resembling climate policy. The Inflation Reduction Act fell apart. I’m not saying this is the only way to read this data. But consider this: The percentage of respondents saying they were somewhat or very worried about members of their household being affected by natural disasters actually went up over the same period. The percentage saying air pollution was “a more serious health threat in lower-income areas” nearby went up. Those saying flooding, heat waves, and wildfires should be considered “a great deal” when siting new affordable housing rose a striking 12 percentage points from 2024 to 2025, and those “very concerned” about rising insurance costs “due to climate risks” rose 14 percentage points.This is not a portrait of an electorate that doesn’t care about climate change. It’s a portrait of an electorate that may actually be very ready to hear a politician convincingly embrace climate populism—championing affordability and better material conditions for working people, in part by protecting them from the predatory industries driving a cost-of-living crisis while poisoning people.This is part of a broader problem. Currently, there’s a big push from centrist Democratic institutions to argue that the party should abandon climate issues in order to win elections. The evidence for this is mixed, at best. As TNR’s Liza Featherstone recently pointed out, Democrats’ striking victories last month showed that candidates fusing climate policy with an energy affordability message did very well. Aaron Regunberg went into further detail on why talking about climate change is a smart strategy: “Right now,” he wrote, “neither party has a significant trust advantage on ‘electric utility bills’ (D+1) or ‘the cost of living’ (R+1). But Democrats do have major trust advantages on ‘climate change’ (D+14) and ‘renewable energy development’ (D+6). By articulating how their climate and clean energy agenda can address these bread-and-butter concerns, Democrats can leverage their advantage on climate to win voters’ trust on what will likely be the most significant issues in 2026 and 2028.”One of the troubles with climate change in political discourse is that some people’s understanding of environmental politics begins and ends with the spotted owl logging battles in the 1990s. This is the sort of attitude that drives the assumption that affordability policy and climate policy are not only distinct but actually opposed. But that’s wildly disconnected from present reality. Maybe Tom Steyer isn’t the guy to illustrate that! But his political fortunes, either way, don’t say much at all about climate messaging more broadly.Stat of the Week3x as many infant deathsA new study finds that babies of mothers “whose drinking water wells were downstream of PFAS releases” died at almost three times the rate in their first year of life as babies of mothers who did not live downstream of PFAS contamination. Read The Washington Post’s report on the study here.What I’m ReadingMore than 200 environmental groups demand halt to new US datacentersAn open letter calls on Congress to pause all approvals of new data centers until regulation catches up, due to problems such as data centers’ voracious energy consumption, greenhouse gas emissions, and water use. From The Guardian’s report:The push comes amid a growing revolt against moves by companies such as Meta, Google and Open AI to plow hundreds of billions of dollars into new datacenters, primarily to meet the huge computing demands of AI. At least 16 datacenter projects, worth a combined $64bn, have been blocked or delayed due to local opposition to rising electricity costs. The facilities’ need for huge amounts of water to cool down equipment has also proved controversial, particularly in drier areas where supplies are scarce.These seemingly parochial concerns have now multiplied to become a potent political force, helping propel Democrats to a series of emphatic recent electoral successes in governor elections in Virginia and New Jersey as well as a stunning upset win in a special public service commission poll in Georgia, with candidates campaigning on lowering power bill costs and curbing datacenters.Read Oliver Milman’s full report at The Guardian.This article first appeared in Life in a Warming World, a weekly TNR newsletter authored by deputy editor Heather Souvaine Horn. Sign up here.

What should we make of billionaire Tom Steyer’s reinvention as a populist candidate for California governor, four years after garnering only 0.72 percent of the popular vote in the 2020 Democratic presidential primary, despite obscene spending from his personal fortune? Is it evidence that he’s a hard man to discourage? (In that race, he dropped almost $24 million on South Carolina alone.) Is it evidence that billionaires get to do a lot of things the rest of us don’t? Or is it evidence that talking about climate change is for losers and Democrats need to abandon it?Politico seems to think it’s the third one: Steyer running a populist gubernatorial campaign means voters don’t care about global warming.“The billionaire environmental activist who built his political profile on climate change—and who wrote in his book last year that ‘climate is what matters most right now, and nothing else comes close’—didn’t mention the issue once in the video launching his campaign for California governor,” reporter Noah Baustin wrote recently. “That was no oversight.” Instead, “it reflects a political reality confronting Democrats ahead of the midterms, where onetime climate evangelists are running into an electorate more worried about the climbing cost of electricity bills and home insurance than a warming atmosphere.”It’s hard to know how to parse a sentence like this. The “climbing cost of electricity bills and home insurance” is, indisputably, a climate issue. Renewable energy is cheaper than fossil fuels, and home insurance is spiking because increasingly frequent and increasingly severe weather events—driven by climate change—are making large swaths of the country expensive or impossible to insure. The fact that voters are struggling to pay for utilities and insurance, therefore, is not evidence that they don’t care about climate change. Instead, it’s evidence that climate change is a kitchen table issue, and politicians are, disadvantageously, failing to embrace the obviously populist message that accompanies robust climate policy. This is a problem with Democratic messaging, not a problem with climate as a topic.The piece goes on: “Climate concern has fallen in the state over time. In 2018, when Gov. Gavin Newsom was running for office, polling found that 57 percent of likely California voters considered climate change a very serious threat to the economy and quality of life for the state’s future. Now, that figure is 50 percent.”This may sound persuasive to you. But in fact, it’s a highly selective reading of the PPIC survey data linked above. What the poll actually found is that the proportion of Californians calling climate change a “very serious” threat peaked at 57 percent in 2019, fell slightly in subsequent years, then fell precipitously by 11 points between July 2022 and July 2023, before rising similarly precipitously from July 2024 to July 2025. Why did it fall so quickly from 2022 to 2023? Sure, maybe people stopped caring about climate change. Or maybe instead, the month after the 2022 poll, Congress passed the Inflation Reduction Act, the most significant climate policy in U.S. history, and people stopped being quite so worried. Why did concern then rise rapidly between July 2024 and July 2025? Well, between those two dates, Trump won the presidential election and proceeded, along with Republicans in Congress, to dismantle anything remotely resembling climate policy. The Inflation Reduction Act fell apart. I’m not saying this is the only way to read this data. But consider this: The percentage of respondents saying they were somewhat or very worried about members of their household being affected by natural disasters actually went up over the same period. The percentage saying air pollution was “a more serious health threat in lower-income areas” nearby went up. Those saying flooding, heat waves, and wildfires should be considered “a great deal” when siting new affordable housing rose a striking 12 percentage points from 2024 to 2025, and those “very concerned” about rising insurance costs “due to climate risks” rose 14 percentage points.This is not a portrait of an electorate that doesn’t care about climate change. It’s a portrait of an electorate that may actually be very ready to hear a politician convincingly embrace climate populism—championing affordability and better material conditions for working people, in part by protecting them from the predatory industries driving a cost-of-living crisis while poisoning people.This is part of a broader problem. Currently, there’s a big push from centrist Democratic institutions to argue that the party should abandon climate issues in order to win elections. The evidence for this is mixed, at best. As TNR’s Liza Featherstone recently pointed out, Democrats’ striking victories last month showed that candidates fusing climate policy with an energy affordability message did very well. Aaron Regunberg went into further detail on why talking about climate change is a smart strategy: “Right now,” he wrote, “neither party has a significant trust advantage on ‘electric utility bills’ (D+1) or ‘the cost of living’ (R+1). But Democrats do have major trust advantages on ‘climate change’ (D+14) and ‘renewable energy development’ (D+6). By articulating how their climate and clean energy agenda can address these bread-and-butter concerns, Democrats can leverage their advantage on climate to win voters’ trust on what will likely be the most significant issues in 2026 and 2028.”One of the troubles with climate change in political discourse is that some people’s understanding of environmental politics begins and ends with the spotted owl logging battles in the 1990s. This is the sort of attitude that drives the assumption that affordability policy and climate policy are not only distinct but actually opposed. But that’s wildly disconnected from present reality. Maybe Tom Steyer isn’t the guy to illustrate that! But his political fortunes, either way, don’t say much at all about climate messaging more broadly.Stat of the Week3x as many infant deathsA new study finds that babies of mothers “whose drinking water wells were downstream of PFAS releases” died at almost three times the rate in their first year of life as babies of mothers who did not live downstream of PFAS contamination. Read The Washington Post’s report on the study here.What I’m ReadingMore than 200 environmental groups demand halt to new US datacentersAn open letter calls on Congress to pause all approvals of new data centers until regulation catches up, due to problems such as data centers’ voracious energy consumption, greenhouse gas emissions, and water use. From The Guardian’s report:The push comes amid a growing revolt against moves by companies such as Meta, Google and Open AI to plow hundreds of billions of dollars into new datacenters, primarily to meet the huge computing demands of AI. At least 16 datacenter projects, worth a combined $64bn, have been blocked or delayed due to local opposition to rising electricity costs. The facilities’ need for huge amounts of water to cool down equipment has also proved controversial, particularly in drier areas where supplies are scarce.These seemingly parochial concerns have now multiplied to become a potent political force, helping propel Democrats to a series of emphatic recent electoral successes in governor elections in Virginia and New Jersey as well as a stunning upset win in a special public service commission poll in Georgia, with candidates campaigning on lowering power bill costs and curbing datacenters.Read Oliver Milman’s full report at The Guardian.This article first appeared in Life in a Warming World, a weekly TNR newsletter authored by deputy editor Heather Souvaine Horn. Sign up here.

Takeaways From AP’s Report on Potential Impacts of Alaska’s Proposed Ambler Access Road

A proposed mining road in Northwest Alaska has sparked debate amid climate change impacts

AMBLER, Alaska (AP) — In Northwest Alaska, a proposed mining road has become a flashpoint in a region already stressed by climate change. The 211-mile (340-kilometer) Ambler Access Road would cut through Gates of the Arctic National Park and cross 11 major rivers and thousands of streams relied on for salmon and caribou. The Trump administration approved the project this fall, setting off concerns over how the Inupiaq subsistence way of life can survive amid rapid environmental change. Many fear the road could push the ecosystem past a breaking point yet also recognize the need for jobs. A strategically important mineral deposit The Ambler Mining District holds one of the largest undeveloped sources of copper, zinc, lead, silver and gold in North America. Demand for minerals used in renewable energy is expected to grow, though most copper mined in the U.S. currently goes to construction — not green technologies. Critics say the road raises broader questions about who gets to decide the terms of mineral extraction on Indigenous lands. Climate change has already devastated subsistence resources Northwest Alaska is warming about four times faster than the global average — a shift that has already upended daily life. The Western Arctic Caribou Herd, once nearly half a million strong, has fallen 66% in two decades to around 164,000 animals. Warmer temperatures delay cold and snow, disrupting migration routes and keeping caribou high in the Brooks Range where hunters can’t easily reach them.Salmon runs have suffered repeated collapses as record rainfall, warmer rivers and thawing permafrost transform once-clear streams. In some areas, permafrost thaw has released metals into waterways, adding to the stress on already fragile fish populations.“Elders who’ve lived here their entire lives have never seen environmental conditions like this,” one local environmental official said. The road threatens what remains The Ambler road would cross a vast, largely undisturbed region to reach major deposits of copper, zinc and other minerals. Building it would require nearly 50 bridges, thousands of culverts and more than 100 truck trips a day during peak operations. Federal biologists warn naturally occurring asbestos could be kicked up by passing trucks and settle onto waterways and vegetation that caribou rely on. The Bureau of Land Management designated some 1.2 million acres of nearby salmon spawning and caribou calving habitat as “critical environmental concern.”Mining would draw large volumes of water from lakes and rivers, disturb permafrost and rely on a tailings facility to hold toxic slurry. With record rainfall becoming more common, downstream communities fear contamination of drinking water and traditional foods.Locals also worry the road could eventually open to the public, inviting outside hunters into an already stressed ecosystem. Many point to Alaska’s Dalton Highway, which opened to public use despite earlier promises it would remain private.Ambler Metals, the company behind the mining project, says it uses proven controls for work in permafrost and will treat all water the mine has contact with to strict standards. The company says it tracks precipitation to size facilities for heavier rainfall. A potential economic lifeline For some, the mine represents opportunity in a region where gasoline can cost nearly $18 a gallon and basic travel for hunting has become prohibitively expensive. Supporters argue mining jobs could help people stay in their villages, which face some of the highest living costs in the country.Ambler mayor Conrad Douglas summed up the tension: “I don’t really know how much the state of Alaska is willing to jeopardize our way of life, but the people do need jobs.”The Associated Press receives support from the Walton Family Foundation for coverage of water and environmental policy. The AP is solely responsible for all content. For all of AP’s environmental coverage, visit https://apnews.com/hub/climate-and-environmentCopyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – December 2025

How a species of bamboo could help protect the South from future floods

In the face of mounting climate disasters, tribes, scientists, and Southern communities are rallying around a nearly forgotten native plant.

In early 2024, Michael Fedoroff trekked out to Tuckabum Creek in York County, Alabama. The environmental anthropologist was there to help plant 300 stalks of rivercane, a bamboo plant native to North America, on an eroded, degraded strip of wetland: a “gnarly” and “wicked” area, according to Fedoroff. If successful, this planting would be the largest cane restoration project in Alabama history. He and his team got the stalks into the ground, buttressed them with hay, left, and hoped for the best.  A few days later, rains swept through the area and the river rose by 9 feet. “We were terrified,” said Fedoroff. He and his team raced back to the site, expecting to find bare dirt. Instead, they found that the rivercane had survived — and so, crucially, had the stream bank. Rivercane used to line the streams, rivers, and bogs of the Southeast from the Blue Ridge Mountains down to the Mississippi Delta. Thick yellow stalks and feathery leaves reached as high as 20 feet into the sky, so dense that riders on horseback would travel around rather than venturing through. In the ground underneath cane stands, rhizomes — gnarled stems just below the soil surface — extended out to cover acres.  When Europeans settled the land that would become North Carolina, Virginia, Georgia, and Alabama, they ripped up trees and vegetation to make way for agriculture and development. Pigs ate rivercane rhizomes and cows munched on developing shoots. Now, thanks to this dramatic upheaval in the landscape, more than 98 percent of rivercane is gone. Of those plentiful dense stands, called canebrakes, only about 12 are left in the whole nation, according to Fedoroff.  But as the Tuckabum Creek project demonstrated, rivercane was an essential bulwark against the ravages of floods. That vast network of tough underground stems kept soil and stream banks in place more effectively than other vegetation, even when rivers ran high. And as the South faces mounting climate-fueled disasters, like Hurricane Helene last year, a small and dedicated network of scientists, volunteers, Native stakeholders, and landowners is working to bring this plant back.  During Helene, the few waterways that were lined by rivercane fared much better than those that weren’t, said Adam Griffith, a rivercane expert at an NC Cooperative Extension outpost in Cherokee. “I saw the devastation of the rivers,” said Griffith. He had considered stepping back from his involvement in rivercane restoration, but recommitted himself after the hurricane. “If the native vegetation had been there, the stream bank would have been in much better shape,” he said.  Rivercane growing along the Cane River in Yancey County, North Carolina, created an “island” where it held the stream bank in place during Hurricane Helene. These photos show the river before and after the storm. Adam Griffith These enthusiasts are ushering in a “cane renaissance,” according to Fedoroff, who directs the University of Alabama program that hosts the Rivercane Restoration Alliance, or RRA, a network of pro-rivercane groups. The RRA and its allies are replanting rivercane where it once flourished, maintaining existing canebrakes and stands, and educating landowners and the general public on cane’s benefits. In addition to those rhizomes saving waterways from devastating erosion, rivercane also provides crucial habitat to native species, such as cane-feeding moths, and filters nitrate and other pollutants from water.  “When people grow to accept cane into their hearts, beautiful things happen,” said Fedoroff, whose team now has a $3.8 million grant from the National Fish and Wildlife Foundation to work on rivercane projects in 12 states throughout the Southeast.  Large restoration projects like this often involve collaboration with many major stakeholders: The Tuckabum Creek project, for example, looped in the RRA, the lumber and land management company Westervelt, the U.S. Army Corps of Engineers, and the Choctaw Nation of Oklahoma. Rivercane enthusiasts stressed that consulting with and including tribes is essential in returning this plant to the landscape. Not only does rivercane bring ecological benefits, it also holds a cultural role for tribes — one that’s been lost as the plant declined.   Historically, Native peoples in the Southeast used rivercane to make things like baskets, blow guns, and arrows, but nowadays, many artisans have turned to synthetic materials for these crafts, said Ryan Spring, a historian and a member of the Choctaw Nation of Oklahoma.  When Spring started his job at the tribe 14 years ago, no one knew much about rivercane ecology, he said. Now, Spring is actively involved in recentering rivercane in the cultural and ecological landscape. “We’re building up community, taking them out, teaching them ecology,” Spring said. “A lot are basket makers, and now they’re using rivercane to make baskets for the first time.” In mature patches of cane, the high density of roots and rhizomes helps keep soils in place during floods. EBCI Cooperative Extension There are challenges to the dream of returning rivercane to its former prolific glory in the Southeast. One is education: For example, rivercane is often confused for invasive Chinese bamboo, which means that landowners and managers generally don’t think twice before removing it. Another barrier to restoration efforts is the cost and availability of rivercane plants. They’re not easy to find in nurseries, and can run between $50 and $60 per plant or more, according to Laura Young of the Virginia Department of Conservation and Recreation.  But Young has found a way around this problem. She does habitat and riverbank restoration in southeastern Virginia, and six years ago, she wanted to plant a canebrake along a river near the tiny town of Jonesville. The cost was prohibitive, and so Young pioneered a method now known colloquially as the “cane train.” She gathered pieces of cane rhizome, planted them in soil-filled sandwich bags, then started a canebrake with the propagated cuttings — all for $6.  Fedoroff pointed out that the cane train method has one major drawback: Different varieties of rivercane are better suited for, say, wet spots or sunny spots, so transplanting cuttings that thrived in one area could result in a bunch of dead plants in another. At his lab, researchers are working on sequencing rivercane genomes so they can compare different plants’ traits and choose the best varieties for different locations. But, Young added, while the propagation method is imperfect, it’s cheap, easy, and better than nothing. Out of the 200 plants in her initial project, 60 took off.  “Rivercane is kind of like investing,” she said. “It’s not get-rich-quick. You just need to invest time and money every year, and then it exponentially pays off.” The cane train also offers a low-investment way for volunteers and private landowners to get involved in stabilizing stream banks. Yancey County, North Carolina, is home to numerous streams and creeks that suffered major erosion damage during Hurricane Helene. This spring, the county government, in partnership with several state and local groups, led a cadre of volunteers in a rivercane restoration project. They harvested thousands of rhizomes, contacted landowners along the county’s devastated waterways, and planted almost 700 shoots, a process they’ll repeat in 2026. “The county really showed up,” said Keira Albert, a restoration coordinator at The Beacon Network, a disaster recovery organization that helped lead the project.  That’s part of the power of a solution like planting rivercane: It’s an actionable, easy way for ordinary landowners and volunteers to heal the landscape around them. “There’s a lot of doom and gloom when we think about climate change,” Fedoroff said. “We become paralyzed. But we’re trying to take a different approach. We can’t get back to that pristine past state, but we can envision a future ecology that’s better.” This story was originally published by Grist with the headline How a species of bamboo could help protect the South from future floods on Dec 11, 2025.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.