Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

As Hurricanes Bear Down and Get Stronger, Can a $34 Billion Plan Save Texas?

News Feed
Thursday, August 8, 2024

Illustration by Emily Lankiewicz / Images via public domain / Library of Congress / FEMA / NASA / Carl & Ann Purcell / Getty Images After Hurricane Ike destroyed thousands of homes and inflicted an estimated $30 billion in damages in 2008, engineers hatched an ambitious plan to protect southeast Texas and its coastal refineries and shipping routes from violent storms. The $34 billion collaboration spearheaded by the U.S. Army Corps of Engineers is a harbinger of the type of massive public works projects that could be required to protect coastal cities like New York and Miami as sea levels rise and hurricanes become less predictable and more severe due to climate change. In this episode of “There’s More to That,” Smithsonian magazine contributor and Texas native Xander Peters reflects on his experiences growing up in a hurricane corridor and tells us how the wildly ambitious effort came together. Then, Eric Sanderson, an ecological historian, tells us how the project could be applied to other low-lying coastal cities. A transcript is below. To subscribe to “There’s More to That,” and to listen to past episodes on how a new generation of high-end West African restaurants is revealing the roots of “Southern” cuisine, why Colombian conservationists are now trying to sterilize the hippos descended from drug kingpin Pablo Escobar’s personal menagerie, what humans’ great acumen for sweating has contributed to our evolution and more, find us on Apple Podcasts, Spotify or wherever you get your podcasts. Chris Klimek: What part of Texas are you from? Xander Peters: I’m over here in East Texas. We’re about 30 miles from the Louisiana border. Klimek: Xander Peters is a contributor to Smithsonian magazine. Peters: It’s a real small town, about 2,000 people. Klimek: What’s life like there? Peters: As a 33-year-old single guy? Kind of boring at times, but it’s home, you know. Not a lot of people move here, but not a lot of people leave, either. So maybe that speaks for itself. Klimek: What’s the geography like? Peters: It’s marshy. It’s wet. We’re kind of the last stretch of the Louisiana swamp, as we all know it. So it’s a wet, humid, difficult place at times. Klimek: One of the constants in Xander’s life growing up in East Texas was hurricanes. Peters: The most memorable was in 2005. Hurricane Rita pretty much was a direct impact to the region. I think it was my freshman year of high school. The power was out for three or four weeks. Society literally shut down. It was hard to get gas. You couldn’t really get groceries. Of course, there was Hurricane Harvey in 2017, and the list goes on. But it’s a fact of life here. Klimek: This area has already been impacted by hurricanes this summer, and there may be more to come. In July, Hurricane Beryl left millions without power in the dangerously high heat, leading to more than 20 deaths. Local officials can’t prevent these big storms, but they can try to prevent the damage, which is why one of the most ambitious and expensive infrastructure projects in the country is in progress, right there along the Galveston coast. But will it be enough to prevent loss of property and life? Or do we need an entirely different way of thinking? From Smithsonian magazine and PRX Productions, this is “There’s More to That,” the show that’s glad to be your nerdy listening alternative to the song of the summer. In this episode, we learn about the so-called Ike Dike going up in East Texas, as well as alternative flood prevention efforts that rely on nature itself. I’m Chris Klimek.Klimek: In the July/August issue of Smithsonian magazine, Xander Peters wrote about a place just a short drive from his hometown: the Bolivar Peninsula. Peters: It’s hard to imagine a more vulnerable geographic location than Bolivar Peninsula. It’s almost totally surrounded by water, so when a storm surge comes, it comes in nearly every direction. Klimek: What’s this region’s history with big storms? Peters: It’s hard to talk about southeast Texas without talking about its storms. It’s defined not just every generation, but every decade. Going back to the Galveston Storm of 1900, which claimed the most fatalities of any American natural disaster. We had Harvey in 2017, which was catastrophic flooding. The list goes on. At this point, I have mixed up the more recent names. I feel like, you know, your grandmother kind of does a roll call of all the children in the family. That’s how I feel about hurricanes now. Klimek: The biggest storm in Xander’s recent memory was 2008’s Hurricane Ike. Peters: We’d never seen the kind of storm surge result from a hurricane as we saw from Ike. And after that storm, it actually changed the way the National Hurricane Center conducts analysis and gives insight ahead of event into a storm surge. And, really, our broader understanding of what creates the disaster aspect of this kind of natural disaster. Klimek: Was it forecasted to be as catastrophic as it was? Peters: We knew it was going to be bad. It was a mandatory evacuation for, I think, even up to my region in East Texas, about 100 miles north of the coast. So we knew it was going to be bad. We at first thought it was going to be a direct hit to the Houston shipping channel, which is all kinds of bad news. We’re looking at $900 billion of goods that go up and down, much of which is oil and gas related, up and down the Houston shipping channel every year. We have the world’s largest petrochemical corridor. And if it’s a fuel, if it’s a gas, it’s being refined there. It’s being made there somehow. And then it’s going to faraway places like Europe. But we got lucky. It missed the shipping channel by about two miles, and it hit around Galveston and Bolivar instead. So Bolivar was not so lucky. But in terms of the larger human toll, very lucky. Because if a storm surge hits the Houston shipping channel directly, we could be looking at a Chernobyl-like event, just given some of the refining capacity across the region. Klimek: What did it look like there on the peninsula after Ike? Peters: There was nothing left. Sixty to 80 percent of the structures were gone. You look at Highway 87, which stretches down pretty much the entire span of the peninsula, and [it was covered in] one or two feet of sediment and mud. There were cattle carcasses, alligator carcasses. There were snakes and rats running wild, confused. There were laundry machines scattered everywhere. There was twisted metal, broken telephone poles, everything in a million huge piles. Klimek: In your story, you mentioned a smell that was very particular. Peters: Yeah. Death lingered for months. I mentioned the cattle carcasses, and there are human carcasses in some places. And all the grasses and the stuff in people’s houses was molding and rotting, and there’s just every foul smell you can imagine. I’m not a military veteran. I’ve never fought in a war. But I can imagine that’s what a battlefield would smell like, you know? Klimek: For more than 100 years, people in the area have been trying to prevent storm surges like this one. Peters: After the Galveston Storm in 1900, they built a kind of state-of-the-art seawall, which has been raised a couple times, if I’m not mistaken, over the last century or so. It was commissioned only a few years after the storm. Meanwhile, you look at Bolivar Peninsula, it has none of those same infrastructure protections. Klimek: So how did the idea of the Ike Dike come together? Peters: A lot of arguing. Klimek: The Ike Dike is the informal name for the massive infrastructure project that officials are betting the future of the Bolivar Peninsula on. Officially called the coastal Texas project, it involves three dozen sea gates leading up to the Houston shipping channel, and large concrete floodwalls to reinforce the city of Galveston. With a $34 billion price tag, it’s being overseen by the Army Corps of Engineers, but it was first envisioned by a local researcher. Peters: Dr. William Merrell. He’s a professor at Texas A&M Galveston, and he’s a marine scientist. He and his wife are also investors in some of the antique architecture across Galveston. As Ike blew in, he came up with a concept that was a barrier system around Galveston that would open and close ahead of events such as Ike. He sat down that evening, as the lights remained out, and started sketching out some of the first designs of what the federal government will break ground on in the coming months—after some 16 years. Klimek: Part of the delay came from the controversial nature of the project. Critics argued the Ike Dike would do irreparable damage to the environment, that it was too complex to work and that it was too expensive. Several different groups submitted their own plans. But after local officials asked Congress to step in, the Army Corps of Engineers was put in charge. Federal help comes with federal money. Klimek (to Peters): Who’s funding this, and what kind of money are we talking about? Peters: Sixty-five percent is coming from the federal government. Texas will pick up the remaining 35 percent. Only about $500,000 of that’s been allocated so far. But the Army Corps says accounting for inflation and everything else that threw it off the end of the project, we’re probably looking at something close to $55 billion. And I wouldn’t be surprised if it’s higher than that. Klimek: All right. So, assuming all this investment buys what we hope it does, how is the dike intended to protect Galveston from storm surges? How will it work? Peters: The whole idea is to stop the water at the sea, not let the water get into the Houston Ship Channel, which causes flooding all the way across it. So essentially, it’s a big gate that, in theory, will stop this huge wall of water as it surges toward the coast ahead of hurricane events like Ike and other ones. It draws on a Dutch flood theory, and the Dutch have some of the earliest forms of flood mitigation systems. Nothing like this has ever been even attempted in the U.S. Not at this scale, not with these high of stakes. It’s a new defining of how not just the federal government, but state governments as well, are going to approach building our way out of the climate crisis. Klimek: How will the gate-and-ring system work? Peters: Twenty-four to 48 hours ahead of a storm surge event, the alerts start going out, and they start moving some of the first ships out of the Houston Ship Channel. And, essentially, they have to hit that button to close the two main gates at the right time so that not too much water gets past it as the storm surge begins coming in in the 12 or 18 hours ahead of a hurricane. When I think of the Ike Dike gates closing, I think of, like, Indiana Jones when the stone rolls out of the cave after him, in terms of what these massive walls will look like moving toward each other. Klimek: How will the Ike Dike incorporate natural storm barriers like sand dunes? Peters: There along Bolivar Peninsula, we’re going to see a massive dune system. I think it was 12- to 14-foot dunes with a swale between them. That is going to line the stretch between Highway 87 and the beachfront. And that’s just piling sediment and sand on top of each other to create a wall. That’s nothing different than what the tides have done themselves, except to a much, much, much larger degree. And then in other places, we’re going to see wetlands restoration, which helps buffer storm surge from the coast. I think it was 6,600 acres of wetlands restoration or remediation for similar marshlands. So it’s equally significant — the natural restoration process — as much as the engineering phase of the project. Klimek: What kind of concerns have environmentalists raised about the coastal Texas project? Peters: Rightful ones, actually. It’s to be expected when you essentially inject these enormous concrete structures into ecosystems. Over the last 50 years in the Netherlands, environmental researchers have noticed changes to ecosystems, sediment patterns being shifted around. And that’s the same concern that we’re seeing on the Texas coast. These are unprecedented actions. A lot of this project is operating on hypothesis and theory. We probably can expect to see some ecological changes along the Texas coast as a result of it long term. Klimek: So how does what they’re trying to do in Galveston reflect how we’re responding nationally to increasingly severe storms and floods? Peters: I guess we’re paying attention now. It took a long time to get to this point. We’re approaching the 16-year anniversary of Ike, and you look at the Houston Ship Channel. You look at Bolivar and the months after Ike. It’s a pretty convincing argument. And over the years, we’ve seen the same argument made over and over. It’s very slow-moving, and I feel it’s very difficult to respond to a fast-moving crisis with a slow-moving solution, but it seems to be the best we have.Klimek: For more context on floods and their potential solutions, we reached out to an expert. Eric Sanderson: Hi everyone, I’m Dr. Eric Sanderson. I’m the vice president for urban conservation at the New York Botanical Garden. I live and work in New York City, and I’ve studied the historical ecology of New York for many years. Klimek: Eric recently spoke about flooding on New York Botanical Garden’s new podcast, “Plant People.” And while New York City may be far from Houston, it faces many of the same challenges. Sanderson: I was here during Hurricane Sandy, and I was here during Hurricane Ida. And after Sandy, I made this map that showed that the areas that flooded during Sandy were more or less where the tidal marshes were around the city. And I showed that around. And at the time, a lot of people are like, oh, well, that’s kind of interesting. But I guess that makes sense. Those would be the lowest places, right? But then Hurricane Ida happened in 2021, and Hurricane Ida was not a coastal storm, but an intense rainstorm. And what re-emerged were the upland streams and wetlands and ponds and places that people weren’t expecting. I made a map there, kind of compared that, and I started talking about it, and I wrote a little thing that was in the New York Times that just made the case that the water is going to go where the water is going to go, and that’s going to be downhill, and that’s going to be where the old streams were. Klimek: Eric does a lot of work with historic maps. He overlays the original topography of a place with the city we know now to reveal where the rivers, lakes, streams and marshes used to be. Often these are the very same places that flood during storms. Sanderson: We call those areas “blue zones,” and they cover some 20 percent of New York City. Places where about a million people live. Klimek: So you’re saying that some of the flooding resulting from Hurricane Ida happened in surprising places, places that were not predicted to flood? Sanderson: Yes. Basements were flooded. And it turns out that a lot of those places were former wetlands or ponds or streams. Because when we build, the city will fill in the wetland. But it’s actually hard to raise the topography high enough that you divert the direction of the water. The water goes where the water has always gone. Klimek: Eric says some of the best examples can be found in our nation’s airports. Sanderson: Think about where JFK Airport is, or LaGuardia Airport, in New York. JFK Airport is built on a big salt marsh. The Great Haystack, as it was called. LaGuardia is actually built in Bowery Bay. It was built in a bay! They filled in the bay, and they built the airport. And why is that? Why did they do that? It’s because by the time we decided we wanted commercial aviation in the late ’20s and 1930s, most of the upland had been built on, right? And so, you know, you weren’t going to, like, clear Flatbush in order to build an airport. What the city did is they took whatever they had, which was the near-coastal zone, and they filled it in. That’s what LaGuardia [is]. And that’s what we did for JFK, and that’s Newark Airport. But that’s also, you know, Reagan Airport in D.C., and that’s also SFO in San Francisco and the Oakland Airport and practically every airport in a coastal city. And it’s because of the relationship of when that technological economic activity developed in the historical projection of the city. It’s fascinating. Klimek: Are there specific human populations most likely to be affected by floods? Sanderson: Yeah. Well, everybody who’s in a low spot. It turns out, of course, that those places have been wet for a long time. Many of them were less desirable. And there’s two consequences of that: One is that they’re disproportionately in public hands, still. So there are places where schools are, where public housing is, where parks are. Because those places were less desirable for private development in the past. And so they tended to stay in the public sphere. The other sort of important factor is poor people. You know, people with less power and less financial capacity tend to go to the places that are more affordable and in some sense have been, you know, shunted by the various systematic mechanisms. You know, redlining and these sorts of things tend to push people into certain precincts of the city. It just turns out that some of those precincts of the city were formerly wetlands, and then those former wetlands are starting to flood again. We did an analysis of our blue zones against environmental justice areas of the city. And about a third of the blue zones overlap with areas that are identified as environmental justice communities. Klimek: Our magazine story about flooding is largely set in Houston, which, you know, in recent days as we’re speaking has been hit by Hurricane Beryl-related flooding. But this obviously has been a problem there for decades, considering that Houston, too, was built on a swamp. Why are so many of our major U.S. cities built on floodplains? Sanderson: They weren’t built to destroy swamps, per se. It’s more, if you think about where it’s a good place to put a city, there’s sort of four factors. One is that there is food. So you have to have agricultural land nearby, and you need water. You need fresh water, right? You also want to be on a trade route. So that means cities like to be on the coast, or on major rivers, or some way of moving stuff around. And the fourth one is defense. A lot of cities were founded at a time where, you know, you had to worry about other people. So they’re often in defensive places. It’s maybe worth saying, Chris, that once a city is established, the next best place to put a city is right beside the city you already have. Once you have that core, then they tend to grow out sort of radially from them. Klimek: So in Houston, the so-called Ike Dike, this massive infrastructure project—I want to ask how you feel about these kinds of large-scale solutions. Is there a limit to what can be achieved with these kinds of massive infrastructure projects? Sanderson: I can’t speak specifically to the details of Houston, but there’s similar sorts of things proposed here in New York. And what I would just say is, I don’t think you can solve the problem with the same kind of thinking that created it in the first place. There was this idea that developed during the Enlightenment, and was expressed through the Industrial Age and into the 20th century, that we could basically control nature. That we were smarter and more powerful than nature is. And the consequences of that are that we have radically changed the atmospheric composition of the Earth in such a way that it’s holding in more energy and creating these storms. So there’s that. And then, you know, we thought, “We can build on a beach, we can build on a wetland. We’ll just fill it in; it’ll be fine.” But we didn’t anticipate sea-level rise and climate change and more severe storms. And so I really think this is a moment where we need a different way of thinking and another kind of wisdom. Klimek: What would a more comprehensive long-term solution for a coastal city, whether it’s Houston or New York, what would that look like if we had some way to address all of this pre-existing construction, and the fact that we’re having to interpolate centuries of prior development? If we could somehow put that aside and just think about the future, what would you do? Sanderson: So I would take the historical lesson, which is that we’ve overbuilt in some places, we built in places that we shouldn’t have. And so, what should we do? I think there are some places where we need to invest in nature instead of more infrastructure. I think it’s actually the reverse thing. Don’t build a giant wall; build a giant park. Don’t build a new storm drain; build a stream. Don’t build another massive retention pond that you don’t know how big to make it; build a wetland that knows how to adapt to changing conditions. And that’s hard, because it means that it just isn’t a problem of the neighborhoods that are flooding. It’s also a problem of the upland areas that aren’t flooding. If a million people need to move, and we need to build another million housing units in safer places—and probably more to help with the housing affordability and other things, right? This is what I mean. It challenges us at many levels. It challenges us in terms of the wisdom to know what to do as an individual person or individual family, but it also challenges our social structures. We need to have a mechanism to try and work that out, and then we need to restore the nature that we destroyed, and that will save us. Klimek: Do plants have a role to play in addressing some of the problems we’re having with flooding? Sanderson: Planting really is the key here. And that’s what I mean by restoring nature from a water perspective. When you see a tree, you should think of a straw. You have this organism that has these roots that are going down into the ground, and they’re pulling the water out and they’re putting it back in the atmosphere. The traditional way of managing water in the city is to build pipes and infrastructures that replace the streams, right? And then take it to the water treatment plants. That’s sort of this one way of managing water. And the goal is to get rid of it as fast as possible. Nature’s way is: There’s many routes that water can take. Water can run down a stream, but it can also percolate into the ground and into the aquifer. Or it can evaporate or evapotranspiration through trees and up into the atmosphere, right? It has multiple pathways to go. So these are all sorts of lessons out of ecology that we can apply with plants to make flooding better. More trees is going to help with interception. It’s going to help with groundwater flows, and it’s going to help with evapotranspiration. More wetland plants is going to help with slowing the water, holding the water and providing habitat for other organisms that use that water. Nature’s been at this for a long time. Like, it really has a lot of great tricks that we can lean into in a way that can make our lives better, too. Klimek: Eric spoke about another innovative solution called “stream daylighting.” Most of the small streams that used to exist in the landscape have been forced underground, rerouted into pipes or otherwise covered by our urban infrastructure. Daylighting restores the streams, bringing them back up to the surface. Sanderson: Here in New York City, there’s this fascinating story on Staten Island that when Staten Island was developing, there was this moment where they were about to spend a lot of money on their sewage infrastructure. And then someone said, well, why don’t we put some of that money into just restoring the streams? And then the streams can help with the stormwater. We can do some adaptations. We can build some ponds and things to help hold a little bit more water in the system. And then the sewage system can just deal with the sewage and not have to deal with the stormwater. But then there’s other things that are being invented, like a green roof. You know, a green roof actually slows the water down. And it used to be that our green roofs, you know, were pretty shallow. But there’s been a lot of experimentation. I was slightly involved with a project that Google built in New York, where they took an old industrial building that was strong enough that they used to drive trains into this building, like locomotives, at the end of the High Line. It’s now an office building, and they popped up the middle of it to create the office structures, and then they put green roofs on them, and those green roofs could hold enough weight that they can have trees on them. Trees and shrubs and plants. And then they planted them with 95 percent native plants. So they’re doing the water thing and they’re doing the biodiversity thing at the same time. It’s a really beautiful project, and an acre and a half of habitat on the West Side of Manhattan. Incredible. Klimek: The solutions to flooding as a result of coastal surges—are those different from rainfall-induced flooding, or do we address them in the same way? Sanderson: We have to address them in different kinds of ways, because the coastal storm surge, that’s the sea level. And then the waves that are being driven by a storm. And so that’s really about, in my view, dunes and beaches and maybe oyster reefs to help break that energy of the storm water and then salt marshes to help absorb it. If it’s an intense rainfall, I think that’s about streams and wetlands and interior modifications giving the water someplace to go. The problem is that you could try and solve one and mess up the other. I think this is why the engineers are so interested in this problem, and they can design something if you tell them what to design for. It’s easy to do the design, but then to miss the specification by a little bit. Remember during Hurricane Sandy when there was that famous photograph of Lower Manhattan being all dark? That’s because the flood took out a power plant that was on the East Side of Manhattan. There was on a little hill beside an old salt marsh. It was designed to be 12 feet above the tide, and that storm surge was 14 feet. So it was just two feet over. You know, like, if they designed it at 14 or 16 feet or would have been OK. When they built that thing, nobody knew exactly what it was. You’re taking a guess. You’re sort of rolling the dice. Natural systems are adaptive on their own. So it’s not like there’s a design blueprint for nature that says, this is exactly what it’ll do. Nature’s a little bit more adaptable, and it can do kind of different sorts of things. And I think that’s a strength in the long run. But it makes people uncertain in the short run. Klimek: Are there any other solutions we haven’t gotten to yet, either in New York City or other cities, approaches to addressing flooding that you find worthy of exploration? Sanderson: We didn’t mention specifically things like bioswales, which are sort of like a small little version of a forest or a little wetland on the side of a street. There’s this idea of permeable pavers, you know, allowing water to get to the ground. Essentially, we’ve covered our cities in stone because we don’t like mud. Essentially, we’ve paved over the city, and our buildings are built in these hard materials, which are like stone and glass and so forth. And so that’s why the water sheets off of it. And, you know, anybody can do this experiment. You just take a bucket of water and go outside and pour it on a rock and watch how fast the water comes off. And then you pour it on the adjacent soil and you’ll see how fast it infiltrates to the ground and doesn’t run off. And so we’ve hardened the city. Anything we can do to soften the city that way, to expose the soil, it’s going to help us with water. I think the only thing to say about that, of course, is that, you know, in the historical conditions, when it was a forest, the water that was in the ground would either eventually emerge in a spring and a stream or go down into the aquifer and then out into the ocean. Now we have other stuff that’s also on the ground, like the subway system and like all the electrical wires, and all the plumbing. So it’s a little bit more complicated. There’s a lot of work in cities to put water in the ground, and I totally understand why. But if you’re ever in New York City on a rainy day, it’s raining above the ground and it’s raining below the ground, in the subway system. Water is single-minded like this. It just wants to go downhill. Klimek: It sounds like we really need to think about more than just rerouting water to solve some of these problems that coastal cities are experiencing. What are the opportunities that we could open up by thinking about more than just moving excess water from one place to another place? Sanderson: Well, I think we need to think about the mitigation side. Of course, everything we’ve talked about adapting to flooding doesn’t mean we don’t have to do something about trying to decrease the amount of carbon that’s in the atmosphere. Floods are a big problem in cities, both because of the way we’ve made our cities and because of the way cities have changed the atmosphere. I mean, there’s the basic climate change fact that the atmosphere has a lot more carbon dioxide in it and other greenhouse gases than it did before. Those holding the heat, the warmer air holds more water and has more energy. And so that creates larger storms. So there’s that. One thing I think a lot about is we tend to forget that we make a lot of choices about how we live in the city. So there’s a sort of lifestyle aspect to this, as well as a sort of urban planning aspect to it, if you like. And I think we could do a lot more on the lifestyle side. Some of that is just coming to this expectation that, yes, there’s going to be flooding in our cities and another ecosystems, right? These things are not going away anytime soon. So we just need to, like, reset, maybe, our expectation that we can build pipes large enough to handle all the water and that, you know, despite whatever the conditions are, if it’s pouring rain, maybe you can’t go outside, or maybe you can’t do something that you were able to do before. So that’s one thing. A second one is to sort of think about those sort of lifestyle choices in terms of all the things you need to do about them. Flooding, about where the water goes, that’s in conversation with where the cars go and where people go. So the transportation networks. There’s some clever ideas there. If you look at the New York City streets now, they’re designed with this bend, so they’re higher in the middle so that the water sheets off toward the gutters on the side. But there’s been some experiments in cities around the world to build them the other way, lower in the middle, and the water comes in. And so basically when there’s a flood, you close the road. And for the short period of time, that road is a stream. Not traffic. It’s a stream. And it turns out that some of our roads are on old streams. And so that kind of solution could work. So these are quite clever things that you can do. Klimek: How would it benefit people to take that into account, to start to think more ecologically and adjust our expectations? How would we ultimately benefit from this? Sanderson: Well, in the near term, we won’t die, right? Like we won’t drown, and we won’t lose our stuff, and we won’t have the social unrest that arises from those bad things. But to sort of turn around in a positive mode at some level, I think this is what life is for, right? Knowing how to live here on Earth with the nature that we have. It’s that kind of deep-seated understanding and desire to be the best person I can be in this amazing, amazing planet that we have that has led my whole career in conservation. Klimek: Eric Sanderson is the vice president of urban conservation for the New York Botanical Garden. He is also the author of Mannahatta: A Natural History of New York City, which is an ecological history of Manhattan Island. Thank you, Dr. Sanderson, for talking with us. Sanderson: Terrific. Thank you so much, Chris. Klimek: To hear more from Eric Sanderson, subscribe to NYBG’s brand new podcast, which is called “Plant People.” We’ll put a link in our show notes along with links to more resources, including Xander Peters’ Smithsonian article about the Ike Dike.Klimek: Before we let you go, let’s give you one last dinner party fact to tide you over as we wrap up our season. Ted Scheinman: I’m Ted Scheinman. I’m a senior editor here at Smithsonian magazine, and I recently edited a great piece by our frequent contributor Richard Grant about Akito Kawahara, who is a butterfly scientist at the University of Florida. And Kawahara’s recent research has changed our understanding of butterflies in major ways. He has traced the evolution of butterflies directly from moths. Butterflies became butterflies when they became day-flying, essentially. But a really curious and, to me, sort of funny wrinkle here is that some of those butterflies who escaped the night and became day-flying, then evolved back into being night fliers and into essentially being moths again, which I can’t help but consider a sort of step backward, like moving back in with your parents or something. But it goes to show you that, you know, evolution is not, you know, directional. And it always brings up some crazy stuff.Klimek: I hope you liked this season of “There’s More of That.” We did something new for us, and we hope that our episodes gave you a sense of what the world of Smithsonian magazine is all about. We’d love to hear from you about how the season was and, more importantly, what you want to hear more of. We’re taking time between seasons to make the show even better. Having your help is key. So if you have the time to help us design our future episodes, please take this survey. You can find it at SmithsonianMag.com/podcastsurvey. It should take about five minutes. “There’s More to That” is a production of Smithsonian magazine and PRX Productions. From the magazine. Our team is me, Debra Rosenberg and Brian Wolly. From PRX, our team is Jessica Miller, Genevieve Sponsler, Adriana Rozas Rivera, Ry Dorsey and Edwin Ochoa. The executive producer of PRX Productions is Jocelyn Gonzales. Our episode artwork is by Emily Lankiewicz. Fact-checking by Stephanie Abramson. Our music is from APM Music. I’m Chris Klimek. Thank you for listening. Get the latest Science stories in your inbox.

A massive project prompted by the wildly destructive Hurricane Ike offers a solutions-based preview of our climate future

Smithmag-Podcast-S02-Ep13-Hurricane-article.jpg
Illustration by Emily Lankiewicz / Images via public domain / Library of Congress / FEMA / NASA / Carl & Ann Purcell / Getty Images

After Hurricane Ike destroyed thousands of homes and inflicted an estimated $30 billion in damages in 2008, engineers hatched an ambitious plan to protect southeast Texas and its coastal refineries and shipping routes from violent storms. The $34 billion collaboration spearheaded by the U.S. Army Corps of Engineers is a harbinger of the type of massive public works projects that could be required to protect coastal cities like New York and Miami as sea levels rise and hurricanes become less predictable and more severe due to climate change.

In this episode of “There’s More to That,” Smithsonian magazine contributor and Texas native Xander Peters reflects on his experiences growing up in a hurricane corridor and tells us how the wildly ambitious effort came together. Then, Eric Sanderson, an ecological historian, tells us how the project could be applied to other low-lying coastal cities.

A transcript is below. To subscribe to “There’s More to That,” and to listen to past episodes on how a new generation of high-end West African restaurants is revealing the roots of “Southern” cuisine, why Colombian conservationists are now trying to sterilize the hippos descended from drug kingpin Pablo Escobar’s personal menagerie, what humans’ great acumen for sweating has contributed to our evolution and more, find us on Apple Podcasts, Spotify or wherever you get your podcasts.


Chris Klimek: What part of Texas are you from?

Xander Peters: I’m over here in East Texas. We’re about 30 miles from the Louisiana border.

Klimek: Xander Peters is a contributor to Smithsonian magazine.

Peters: It’s a real small town, about 2,000 people.

Klimek: What’s life like there?

Peters: As a 33-year-old single guy? Kind of boring at times, but it’s home, you know. Not a lot of people move here, but not a lot of people leave, either. So maybe that speaks for itself.

Klimek: What’s the geography like?

Peters: It’s marshy. It’s wet. We’re kind of the last stretch of the Louisiana swamp, as we all know it. So it’s a wet, humid, difficult place at times.

Klimek: One of the constants in Xander’s life growing up in East Texas was hurricanes.

Peters: The most memorable was in 2005. Hurricane Rita pretty much was a direct impact to the region. I think it was my freshman year of high school. The power was out for three or four weeks. Society literally shut down. It was hard to get gas. You couldn’t really get groceries. Of course, there was Hurricane Harvey in 2017, and the list goes on. But it’s a fact of life here.

Klimek: This area has already been impacted by hurricanes this summer, and there may be more to come. In July, Hurricane Beryl left millions without power in the dangerously high heat, leading to more than 20 deaths. Local officials can’t prevent these big storms, but they can try to prevent the damage, which is why one of the most ambitious and expensive infrastructure projects in the country is in progress, right there along the Galveston coast. But will it be enough to prevent loss of property and life? Or do we need an entirely different way of thinking?

From Smithsonian magazine and PRX Productions, this is “There’s More to That,” the show that’s glad to be your nerdy listening alternative to the song of the summer. In this episode, we learn about the so-called Ike Dike going up in East Texas, as well as alternative flood prevention efforts that rely on nature itself. I’m Chris Klimek.


Klimek: In the July/August issue of Smithsonian magazine, Xander Peters wrote about a place just a short drive from his hometown: the Bolivar Peninsula.

Peters: It’s hard to imagine a more vulnerable geographic location than Bolivar Peninsula. It’s almost totally surrounded by water, so when a storm surge comes, it comes in nearly every direction.

Klimek: What’s this region’s history with big storms?

Peters: It’s hard to talk about southeast Texas without talking about its storms. It’s defined not just every generation, but every decade. Going back to the Galveston Storm of 1900, which claimed the most fatalities of any American natural disaster. We had Harvey in 2017, which was catastrophic flooding. The list goes on. At this point, I have mixed up the more recent names. I feel like, you know, your grandmother kind of does a roll call of all the children in the family. That’s how I feel about hurricanes now.

Klimek: The biggest storm in Xander’s recent memory was 2008’s Hurricane Ike.

Peters: We’d never seen the kind of storm surge result from a hurricane as we saw from Ike. And after that storm, it actually changed the way the National Hurricane Center conducts analysis and gives insight ahead of event into a storm surge. And, really, our broader understanding of what creates the disaster aspect of this kind of natural disaster.

Klimek: Was it forecasted to be as catastrophic as it was?

Peters: We knew it was going to be bad. It was a mandatory evacuation for, I think, even up to my region in East Texas, about 100 miles north of the coast. So we knew it was going to be bad. We at first thought it was going to be a direct hit to the Houston shipping channel, which is all kinds of bad news. We’re looking at $900 billion of goods that go up and down, much of which is oil and gas related, up and down the Houston shipping channel every year. We have the world’s largest petrochemical corridor. And if it’s a fuel, if it’s a gas, it’s being refined there. It’s being made there somehow. And then it’s going to faraway places like Europe.

But we got lucky. It missed the shipping channel by about two miles, and it hit around Galveston and Bolivar instead. So Bolivar was not so lucky. But in terms of the larger human toll, very lucky. Because if a storm surge hits the Houston shipping channel directly, we could be looking at a Chernobyl-like event, just given some of the refining capacity across the region.

Klimek: What did it look like there on the peninsula after Ike?

Peters: There was nothing left. Sixty to 80 percent of the structures were gone. You look at Highway 87, which stretches down pretty much the entire span of the peninsula, and [it was covered in] one or two feet of sediment and mud. There were cattle carcasses, alligator carcasses. There were snakes and rats running wild, confused. There were laundry machines scattered everywhere. There was twisted metal, broken telephone poles, everything in a million huge piles.

Klimek: In your story, you mentioned a smell that was very particular.

Peters: Yeah. Death lingered for months. I mentioned the cattle carcasses, and there are human carcasses in some places. And all the grasses and the stuff in people’s houses was molding and rotting, and there’s just every foul smell you can imagine. I’m not a military veteran. I’ve never fought in a war. But I can imagine that’s what a battlefield would smell like, you know?

Klimek: For more than 100 years, people in the area have been trying to prevent storm surges like this one.

Peters: After the Galveston Storm in 1900, they built a kind of state-of-the-art seawall, which has been raised a couple times, if I’m not mistaken, over the last century or so. It was commissioned only a few years after the storm. Meanwhile, you look at Bolivar Peninsula, it has none of those same infrastructure protections.

Klimek: So how did the idea of the Ike Dike come together?

Peters: A lot of arguing.

Klimek: The Ike Dike is the informal name for the massive infrastructure project that officials are betting the future of the Bolivar Peninsula on. Officially called the coastal Texas project, it involves three dozen sea gates leading up to the Houston shipping channel, and large concrete floodwalls to reinforce the city of Galveston. With a $34 billion price tag, it’s being overseen by the Army Corps of Engineers, but it was first envisioned by a local researcher.

Peters: Dr. William Merrell. He’s a professor at Texas A&M Galveston, and he’s a marine scientist. He and his wife are also investors in some of the antique architecture across Galveston. As Ike blew in, he came up with a concept that was a barrier system around Galveston that would open and close ahead of events such as Ike. He sat down that evening, as the lights remained out, and started sketching out some of the first designs of what the federal government will break ground on in the coming months—after some 16 years.

Klimek: Part of the delay came from the controversial nature of the project. Critics argued the Ike Dike would do irreparable damage to the environment, that it was too complex to work and that it was too expensive. Several different groups submitted their own plans. But after local officials asked Congress to step in, the Army Corps of Engineers was put in charge. Federal help comes with federal money.

Klimek (to Peters): Who’s funding this, and what kind of money are we talking about?

Peters: Sixty-five percent is coming from the federal government. Texas will pick up the remaining 35 percent. Only about $500,000 of that’s been allocated so far. But the Army Corps says accounting for inflation and everything else that threw it off the end of the project, we’re probably looking at something close to $55 billion. And I wouldn’t be surprised if it’s higher than that.

Klimek: All right. So, assuming all this investment buys what we hope it does, how is the dike intended to protect Galveston from storm surges? How will it work?

Peters: The whole idea is to stop the water at the sea, not let the water get into the Houston Ship Channel, which causes flooding all the way across it. So essentially, it’s a big gate that, in theory, will stop this huge wall of water as it surges toward the coast ahead of hurricane events like Ike and other ones. It draws on a Dutch flood theory, and the Dutch have some of the earliest forms of flood mitigation systems. Nothing like this has ever been even attempted in the U.S. Not at this scale, not with these high of stakes. It’s a new defining of how not just the federal government, but state governments as well, are going to approach building our way out of the climate crisis.

Klimek: How will the gate-and-ring system work?

Peters: Twenty-four to 48 hours ahead of a storm surge event, the alerts start going out, and they start moving some of the first ships out of the Houston Ship Channel. And, essentially, they have to hit that button to close the two main gates at the right time so that not too much water gets past it as the storm surge begins coming in in the 12 or 18 hours ahead of a hurricane. When I think of the Ike Dike gates closing, I think of, like, Indiana Jones when the stone rolls out of the cave after him, in terms of what these massive walls will look like moving toward each other.

Klimek: How will the Ike Dike incorporate natural storm barriers like sand dunes?

Peters: There along Bolivar Peninsula, we’re going to see a massive dune system. I think it was 12- to 14-foot dunes with a swale between them. That is going to line the stretch between Highway 87 and the beachfront. And that’s just piling sediment and sand on top of each other to create a wall. That’s nothing different than what the tides have done themselves, except to a much, much, much larger degree. And then in other places, we’re going to see wetlands restoration, which helps buffer storm surge from the coast. I think it was 6,600 acres of wetlands restoration or remediation for similar marshlands. So it’s equally significant — the natural restoration process — as much as the engineering phase of the project.

Klimek: What kind of concerns have environmentalists raised about the coastal Texas project?

Peters: Rightful ones, actually. It’s to be expected when you essentially inject these enormous concrete structures into ecosystems. Over the last 50 years in the Netherlands, environmental researchers have noticed changes to ecosystems, sediment patterns being shifted around. And that’s the same concern that we’re seeing on the Texas coast. These are unprecedented actions. A lot of this project is operating on hypothesis and theory. We probably can expect to see some ecological changes along the Texas coast as a result of it long term.

Klimek: So how does what they’re trying to do in Galveston reflect how we’re responding nationally to increasingly severe storms and floods?

Peters: I guess we’re paying attention now. It took a long time to get to this point. We’re approaching the 16-year anniversary of Ike, and you look at the Houston Ship Channel. You look at Bolivar and the months after Ike. It’s a pretty convincing argument. And over the years, we’ve seen the same argument made over and over. It’s very slow-moving, and I feel it’s very difficult to respond to a fast-moving crisis with a slow-moving solution, but it seems to be the best we have.


Klimek: For more context on floods and their potential solutions, we reached out to an expert.

Eric Sanderson: Hi everyone, I’m Dr. Eric Sanderson. I’m the vice president for urban conservation at the New York Botanical Garden. I live and work in New York City, and I’ve studied the historical ecology of New York for many years.

Klimek: Eric recently spoke about flooding on New York Botanical Garden’s new podcast, “Plant People.” And while New York City may be far from Houston, it faces many of the same challenges.

Sanderson: I was here during Hurricane Sandy, and I was here during Hurricane Ida. And after Sandy, I made this map that showed that the areas that flooded during Sandy were more or less where the tidal marshes were around the city. And I showed that around. And at the time, a lot of people are like, oh, well, that’s kind of interesting. But I guess that makes sense. Those would be the lowest places, right? But then Hurricane Ida happened in 2021, and Hurricane Ida was not a coastal storm, but an intense rainstorm. And what re-emerged were the upland streams and wetlands and ponds and places that people weren’t expecting. I made a map there, kind of compared that, and I started talking about it, and I wrote a little thing that was in the New York Times that just made the case that the water is going to go where the water is going to go, and that’s going to be downhill, and that’s going to be where the old streams were.

Klimek: Eric does a lot of work with historic maps. He overlays the original topography of a place with the city we know now to reveal where the rivers, lakes, streams and marshes used to be. Often these are the very same places that flood during storms.

Sanderson: We call those areas “blue zones,” and they cover some 20 percent of New York City. Places where about a million people live.

Klimek: So you’re saying that some of the flooding resulting from Hurricane Ida happened in surprising places, places that were not predicted to flood?

Sanderson: Yes. Basements were flooded. And it turns out that a lot of those places were former wetlands or ponds or streams. Because when we build, the city will fill in the wetland. But it’s actually hard to raise the topography high enough that you divert the direction of the water. The water goes where the water has always gone.

Klimek: Eric says some of the best examples can be found in our nation’s airports.

Sanderson: Think about where JFK Airport is, or LaGuardia Airport, in New York. JFK Airport is built on a big salt marsh. The Great Haystack, as it was called. LaGuardia is actually built in Bowery Bay. It was built in a bay! They filled in the bay, and they built the airport. And why is that? Why did they do that? It’s because by the time we decided we wanted commercial aviation in the late ’20s and 1930s, most of the upland had been built on, right?

And so, you know, you weren’t going to, like, clear Flatbush in order to build an airport. What the city did is they took whatever they had, which was the near-coastal zone, and they filled it in. That’s what LaGuardia [is]. And that’s what we did for JFK, and that’s Newark Airport. But that’s also, you know, Reagan Airport in D.C., and that’s also SFO in San Francisco and the Oakland Airport and practically every airport in a coastal city. And it’s because of the relationship of when that technological economic activity developed in the historical projection of the city. It’s fascinating.

Klimek: Are there specific human populations most likely to be affected by floods?

Sanderson: Yeah. Well, everybody who’s in a low spot. It turns out, of course, that those places have been wet for a long time. Many of them were less desirable. And there’s two consequences of that: One is that they’re disproportionately in public hands, still. So there are places where schools are, where public housing is, where parks are. Because those places were less desirable for private development in the past. And so they tended to stay in the public sphere. The other sort of important factor is poor people. You know, people with less power and less financial capacity tend to go to the places that are more affordable and in some sense have been, you know, shunted by the various systematic mechanisms. You know, redlining and these sorts of things tend to push people into certain precincts of the city. It just turns out that some of those precincts of the city were formerly wetlands, and then those former wetlands are starting to flood again. We did an analysis of our blue zones against environmental justice areas of the city. And about a third of the blue zones overlap with areas that are identified as environmental justice communities.

Klimek: Our magazine story about flooding is largely set in Houston, which, you know, in recent days as we’re speaking has been hit by Hurricane Beryl-related flooding. But this obviously has been a problem there for decades, considering that Houston, too, was built on a swamp. Why are so many of our major U.S. cities built on floodplains?

Sanderson: They weren’t built to destroy swamps, per se. It’s more, if you think about where it’s a good place to put a city, there’s sort of four factors. One is that there is food. So you have to have agricultural land nearby, and you need water. You need fresh water, right? You also want to be on a trade route. So that means cities like to be on the coast, or on major rivers, or some way of moving stuff around. And the fourth one is defense. A lot of cities were founded at a time where, you know, you had to worry about other people. So they’re often in defensive places. It’s maybe worth saying, Chris, that once a city is established, the next best place to put a city is right beside the city you already have. Once you have that core, then they tend to grow out sort of radially from them.

Klimek: So in Houston, the so-called Ike Dike, this massive infrastructure project—I want to ask how you feel about these kinds of large-scale solutions. Is there a limit to what can be achieved with these kinds of massive infrastructure projects?

Sanderson: I can’t speak specifically to the details of Houston, but there’s similar sorts of things proposed here in New York. And what I would just say is, I don’t think you can solve the problem with the same kind of thinking that created it in the first place.

There was this idea that developed during the Enlightenment, and was expressed through the Industrial Age and into the 20th century, that we could basically control nature. That we were smarter and more powerful than nature is. And the consequences of that are that we have radically changed the atmospheric composition of the Earth in such a way that it’s holding in more energy and creating these storms. So there’s that. And then, you know, we thought, “We can build on a beach, we can build on a wetland. We’ll just fill it in; it’ll be fine.” But we didn’t anticipate sea-level rise and climate change and more severe storms. And so I really think this is a moment where we need a different way of thinking and another kind of wisdom.

Klimek: What would a more comprehensive long-term solution for a coastal city, whether it’s Houston or New York, what would that look like if we had some way to address all of this pre-existing construction, and the fact that we’re having to interpolate centuries of prior development? If we could somehow put that aside and just think about the future, what would you do?

Sanderson: So I would take the historical lesson, which is that we’ve overbuilt in some places, we built in places that we shouldn’t have. And so, what should we do? I think there are some places where we need to invest in nature instead of more infrastructure. I think it’s actually the reverse thing. Don’t build a giant wall; build a giant park. Don’t build a new storm drain; build a stream. Don’t build another massive retention pond that you don’t know how big to make it; build a wetland that knows how to adapt to changing conditions.

And that’s hard, because it means that it just isn’t a problem of the neighborhoods that are flooding. It’s also a problem of the upland areas that aren’t flooding. If a million people need to move, and we need to build another million housing units in safer places—and probably more to help with the housing affordability and other things, right? This is what I mean. It challenges us at many levels. It challenges us in terms of the wisdom to know what to do as an individual person or individual family, but it also challenges our social structures. We need to have a mechanism to try and work that out, and then we need to restore the nature that we destroyed, and that will save us.

Klimek: Do plants have a role to play in addressing some of the problems we’re having with flooding?

Sanderson: Planting really is the key here. And that’s what I mean by restoring nature from a water perspective. When you see a tree, you should think of a straw. You have this organism that has these roots that are going down into the ground, and they’re pulling the water out and they’re putting it back in the atmosphere. The traditional way of managing water in the city is to build pipes and infrastructures that replace the streams, right? And then take it to the water treatment plants. That’s sort of this one way of managing water. And the goal is to get rid of it as fast as possible. Nature’s way is: There’s many routes that water can take. Water can run down a stream, but it can also percolate into the ground and into the aquifer. Or it can evaporate or evapotranspiration through trees and up into the atmosphere, right? It has multiple pathways to go.

So these are all sorts of lessons out of ecology that we can apply with plants to make flooding better. More trees is going to help with interception. It’s going to help with groundwater flows, and it’s going to help with evapotranspiration. More wetland plants is going to help with slowing the water, holding the water and providing habitat for other organisms that use that water. Nature’s been at this for a long time. Like, it really has a lot of great tricks that we can lean into in a way that can make our lives better, too.

Klimek: Eric spoke about another innovative solution called “stream daylighting.” Most of the small streams that used to exist in the landscape have been forced underground, rerouted into pipes or otherwise covered by our urban infrastructure. Daylighting restores the streams, bringing them back up to the surface.

Sanderson: Here in New York City, there’s this fascinating story on Staten Island that when Staten Island was developing, there was this moment where they were about to spend a lot of money on their sewage infrastructure. And then someone said, well, why don’t we put some of that money into just restoring the streams? And then the streams can help with the stormwater. We can do some adaptations. We can build some ponds and things to help hold a little bit more water in the system. And then the sewage system can just deal with the sewage and not have to deal with the stormwater.

But then there’s other things that are being invented, like a green roof. You know, a green roof actually slows the water down. And it used to be that our green roofs, you know, were pretty shallow. But there’s been a lot of experimentation. I was slightly involved with a project that Google built in New York, where they took an old industrial building that was strong enough that they used to drive trains into this building, like locomotives, at the end of the High Line. It’s now an office building, and they popped up the middle of it to create the office structures, and then they put green roofs on them, and those green roofs could hold enough weight that they can have trees on them. Trees and shrubs and plants. And then they planted them with 95 percent native plants. So they’re doing the water thing and they’re doing the biodiversity thing at the same time. It’s a really beautiful project, and an acre and a half of habitat on the West Side of Manhattan. Incredible.

Klimek: The solutions to flooding as a result of coastal surges—are those different from rainfall-induced flooding, or do we address them in the same way?

Sanderson: We have to address them in different kinds of ways, because the coastal storm surge, that’s the sea level. And then the waves that are being driven by a storm. And so that’s really about, in my view, dunes and beaches and maybe oyster reefs to help break that energy of the storm water and then salt marshes to help absorb it.

If it’s an intense rainfall, I think that’s about streams and wetlands and interior modifications giving the water someplace to go. The problem is that you could try and solve one and mess up the other. I think this is why the engineers are so interested in this problem, and they can design something if you tell them what to design for. It’s easy to do the design, but then to miss the specification by a little bit.

Remember during Hurricane Sandy when there was that famous photograph of Lower Manhattan being all dark? That’s because the flood took out a power plant that was on the East Side of Manhattan. There was on a little hill beside an old salt marsh. It was designed to be 12 feet above the tide, and that storm surge was 14 feet. So it was just two feet over. You know, like, if they designed it at 14 or 16 feet or would have been OK. When they built that thing, nobody knew exactly what it was. You’re taking a guess. You’re sort of rolling the dice. Natural systems are adaptive on their own.

So it’s not like there’s a design blueprint for nature that says, this is exactly what it’ll do. Nature’s a little bit more adaptable, and it can do kind of different sorts of things. And I think that’s a strength in the long run. But it makes people uncertain in the short run.

Klimek: Are there any other solutions we haven’t gotten to yet, either in New York City or other cities, approaches to addressing flooding that you find worthy of exploration?

Sanderson: We didn’t mention specifically things like bioswales, which are sort of like a small little version of a forest or a little wetland on the side of a street. There’s this idea of permeable pavers, you know, allowing water to get to the ground. Essentially, we’ve covered our cities in stone because we don’t like mud. Essentially, we’ve paved over the city, and our buildings are built in these hard materials, which are like stone and glass and so forth. And so that’s why the water sheets off of it.

And, you know, anybody can do this experiment. You just take a bucket of water and go outside and pour it on a rock and watch how fast the water comes off. And then you pour it on the adjacent soil and you’ll see how fast it infiltrates to the ground and doesn’t run off. And so we’ve hardened the city. Anything we can do to soften the city that way, to expose the soil, it’s going to help us with water. I think the only thing to say about that, of course, is that, you know, in the historical conditions, when it was a forest, the water that was in the ground would either eventually emerge in a spring and a stream or go down into the aquifer and then out into the ocean.

Now we have other stuff that’s also on the ground, like the subway system and like all the electrical wires, and all the plumbing. So it’s a little bit more complicated. There’s a lot of work in cities to put water in the ground, and I totally understand why. But if you’re ever in New York City on a rainy day, it’s raining above the ground and it’s raining below the ground, in the subway system. Water is single-minded like this. It just wants to go downhill.

Klimek: It sounds like we really need to think about more than just rerouting water to solve some of these problems that coastal cities are experiencing. What are the opportunities that we could open up by thinking about more than just moving excess water from one place to another place?

Sanderson: Well, I think we need to think about the mitigation side. Of course, everything we’ve talked about adapting to flooding doesn’t mean we don’t have to do something about trying to decrease the amount of carbon that’s in the atmosphere. Floods are a big problem in cities, both because of the way we’ve made our cities and because of the way cities have changed the atmosphere. I mean, there’s the basic climate change fact that the atmosphere has a lot more carbon dioxide in it and other greenhouse gases than it did before. Those holding the heat, the warmer air holds more water and has more energy. And so that creates larger storms. So there’s that.

One thing I think a lot about is we tend to forget that we make a lot of choices about how we live in the city. So there’s a sort of lifestyle aspect to this, as well as a sort of urban planning aspect to it, if you like. And I think we could do a lot more on the lifestyle side. Some of that is just coming to this expectation that, yes, there’s going to be flooding in our cities and another ecosystems, right? These things are not going away anytime soon. So we just need to, like, reset, maybe, our expectation that we can build pipes large enough to handle all the water and that, you know, despite whatever the conditions are, if it’s pouring rain, maybe you can’t go outside, or maybe you can’t do something that you were able to do before. So that’s one thing.

A second one is to sort of think about those sort of lifestyle choices in terms of all the things you need to do about them. Flooding, about where the water goes, that’s in conversation with where the cars go and where people go. So the transportation networks. There’s some clever ideas there. If you look at the New York City streets now, they’re designed with this bend, so they’re higher in the middle so that the water sheets off toward the gutters on the side. But there’s been some experiments in cities around the world to build them the other way, lower in the middle, and the water comes in. And so basically when there’s a flood, you close the road. And for the short period of time, that road is a stream. Not traffic. It’s a stream. And it turns out that some of our roads are on old streams. And so that kind of solution could work. So these are quite clever things that you can do.

Klimek: How would it benefit people to take that into account, to start to think more ecologically and adjust our expectations? How would we ultimately benefit from this?

Sanderson: Well, in the near term, we won’t die, right? Like we won’t drown, and we won’t lose our stuff, and we won’t have the social unrest that arises from those bad things. But to sort of turn around in a positive mode at some level, I think this is what life is for, right? Knowing how to live here on Earth with the nature that we have. It’s that kind of deep-seated understanding and desire to be the best person I can be in this amazing, amazing planet that we have that has led my whole career in conservation.

Klimek: Eric Sanderson is the vice president of urban conservation for the New York Botanical Garden. He is also the author of Mannahatta: A Natural History of New York City, which is an ecological history of Manhattan Island. Thank you, Dr. Sanderson, for talking with us.

Sanderson: Terrific. Thank you so much, Chris.

Klimek: To hear more from Eric Sanderson, subscribe to NYBG’s brand new podcast, which is called “Plant People.” We’ll put a link in our show notes along with links to more resources, including Xander Peters’ Smithsonian article about the Ike Dike.


Klimek: Before we let you go, let’s give you one last dinner party fact to tide you over as we wrap up our season.

Ted Scheinman: I’m Ted Scheinman. I’m a senior editor here at Smithsonian magazine, and I recently edited a great piece by our frequent contributor Richard Grant about Akito Kawahara, who is a butterfly scientist at the University of Florida. And Kawahara’s recent research has changed our understanding of butterflies in major ways. He has traced the evolution of butterflies directly from moths. Butterflies became butterflies when they became day-flying, essentially. But a really curious and, to me, sort of funny wrinkle here is that some of those butterflies who escaped the night and became day-flying, then evolved back into being night fliers and into essentially being moths again, which I can’t help but consider a sort of step backward, like moving back in with your parents or something. But it goes to show you that, you know, evolution is not, you know, directional. And it always brings up some crazy stuff.


Klimek: I hope you liked this season of “There’s More of That.” We did something new for us, and we hope that our episodes gave you a sense of what the world of Smithsonian magazine is all about. We’d love to hear from you about how the season was and, more importantly, what you want to hear more of. We’re taking time between seasons to make the show even better. Having your help is key. So if you have the time to help us design our future episodes, please take this survey. You can find it at SmithsonianMag.com/podcastsurvey. It should take about five minutes.

“There’s More to That” is a production of Smithsonian magazine and PRX Productions.

From the magazine. Our team is me, Debra Rosenberg and Brian Wolly.

From PRX, our team is Jessica Miller, Genevieve Sponsler, Adriana Rozas Rivera, Ry Dorsey and Edwin Ochoa. The executive producer of PRX Productions is Jocelyn Gonzales.

Our episode artwork is by Emily Lankiewicz. Fact-checking by Stephanie Abramson. Our music is from APM Music.

I’m Chris Klimek. Thank you for listening.

Get the latest Science stories in your inbox.

Read the full story here.
Photos courtesy of

UN General Assembly Chief Says Curbing Climate Change Would Make World More Peaceful and Safer

The president of the United Nations General Assembly says climate change is the biggest threat to world peace

BELEM, Brazil (AP) — Harms from climate change are the biggest threat to world peace, the president of the United Nations General Assembly says.“To those who are arguing that in these times we have to focus more on peace and security, one can only say the climate crisis is the biggest security threat of our century,” General Assembly President Annalena Baerbock told The Associated Press in an interview at the U.N. climate talks at the edge of the Amazon.“We can only ensure long-lasting peace and security over the world if we fight the climate crisis altogether and if we join hands in delivering on sustainable development because they are heavily interconnected,” said Baerbock, a former German foreign minister.Baerbock pointed to droughts and other damage from climate extremes in places such as Chad, Syria and Iraq. When crops die, people go hungry and then migrate elsewhere or fight over scarce water, she said.“This is a vicious circle,” Baerbock said. “If we do not stop the climate crisis it will fuel hunger and poverty which will fuel again displacement and by that will challenge regions in a different way, leading again to instability, crisis and most often also conflict. So, fighting the climate crisis is also the best security insurance.”But at the same time, dealing with climate change's problems can make the world more peaceful, Baerbock said, pointing to conflicts over water in Central Asia. There, an agreement on water became “a booster for peaceful cooperation and peaceful settlement.” Drought can take a long time to make an impact, but storms made worse by Earth's warming atmosphere can strike in a flash. Baerbock pointed to last month's Hurricane Melissa decimating Jamaica and two typhoons smacking the Philippines.“Achievements of sustainable development can be diminished in just hours,'' Baerbock said. That's why foreign aid from rich nations to poor to help deal with climate disasters and adapt to future ones "are also investments in stable societies and regions," she said.Baerbock, a veteran of climate conferences, said people scoffed at the young people of small island nations who filed a suit in the International Court of Justice about climate change, damage and their future. But the court's ruling in July that action must be taken to limit warming “shows the power of the world if it works together,” she said.Small island nations have said they will take the court's decision to the U.N. General Assembly, where votes are decided by majority unlike the veto power of the U.N. security council or the consensus unanimity of U.N. climate talks.“Now it’s up to the majority of the member states if they want to bring a resolution forward underlining the importance of this case,” said Baerbock, adding that she has to follow the desires of the majority of the 193 U.N. member states.“The vast majority of member states has called not only at the last climate conferences but also here in Belem for transitioning away from our fossil world, not because of the climate crisis, but because they underline that this is the best security investment for all of us,” Baerbock said.The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Nov. 2025

The meat industry’s climate accountability moment is here

Some of the world’s biggest meat companies are finally facing a degree of accountability for allegedly deceiving the public about their pollution. On Monday, America’s largest meat producer, Tyson Foods, agreed to stop marketing a line of its so-called climate-friendly beef and to drop its claim that it could reach “net-zero” emissions by 2050. The […]

Cattle at a large feedlot in Texas. Some of the world’s biggest meat companies are finally facing a degree of accountability for allegedly deceiving the public about their pollution. On Monday, America’s largest meat producer, Tyson Foods, agreed to stop marketing a line of its so-called climate-friendly beef and to drop its claim that it could reach “net-zero” emissions by 2050. The changes are the result of a lawsuit settlement with the Environmental Working Group, a nonprofit that sued Tyson for allegedly misleading consumers. Meat and dairy production are two of the highest polluting industries, accounting for 14.5 to 19 percent of global greenhouse gas emissions, with much of it stemming from beef. As part of the settlement, Tyson must refrain from making these environmental claims for five years and can’t make new ones unless they’re verified by experts.  “This settlement reinforces the principle that consumers deserve honesty and accountability from the corporations shaping our food system,” Caroline Leary, general counsel and chief operating officer at EWG, said in a press release.    This story was first featured in the Future Perfect newsletter. Sign up here to explore the big, complicated problems the world faces and the most efficient ways to solve them. Sent twice a week. Tyson Foods declined an interview request for this story. In a statement to Vox, a Tyson spokesperson said the decision to settle “was made solely to avoid the expense and distraction of ongoing litigation and does not represent any admission of wrongdoing by Tyson Foods.”   (If you’re wondering how Tyson was ever allowed to make these claims in the first place, it’s because the US Department of Agriculture lets meat companies say pretty much whatever they want on their packaging.)   Less than two weeks ago, the US subsidiary of Brazil-based JBS — the world’s largest meat company — paid $1.1 million to settle a similar lawsuit brought by New York Attorney General Letitia James over the company’s claim that it could reach net-zero emissions by 2040. “Bacon, chicken wings and steak with net-zero emissions,” the company stated in a 2021 full-page New York Times ad. “It’s possible.” (It’s not.)  The terms of the settlement will require JBS to discuss net zero as a goal or ambition, as opposed to a pledge or commitment. JBS didn’t respond to an interview request for this story. It all amounts to what two environmental researchers have called a form of “epistemic pollution” that shapes “what we know, understand and believe” about meat’s climate footprint. This pollution of public discourse has worked: Polls show people significantly underrate animal agriculture’s environmental impact.   The two settlements represent an antidote to that pollution, and a rare shred of justice for an industry that has otherwise evaded climate accountability. But if the events of the last 10 days at the world’s largest climate change conference are any indication, the meat giants aren’t deterred and are as emboldened as ever to mislead the public on their pollution and obstruct efforts to regulate it.  Calling the meat industry’s bluff  This month, over 50,000 people descended on Belém, Brazil, to attend the United Nations’ annual COP (conference of the parties) climate summit, where world leaders meet to assess the state of climate change and pledge to cut emissions.  The conference largely focuses on fossil fuels, but in recent years, it’s begun to put more attention on food and agriculture, which account for around one-third of global climate-warming emissions. In response, meat and dairy companies have ramped up their presence at COP events to influence negotiations. This year was no different. In fact, JBS led the food industry’s officially recognized effort to develop environmental policy recommendations for governments to consider.  Unsurprisingly, JBS and its peers didn’t recommend stringent environmental regulations or policies to shift countries away from meat-heavy diets, which environmental scientists say we must do to meet global climate targets. Instead, it’s promoting voluntary sustainability programs, like paying farmers to adopt more sustainable practices. In other words: “Don’t regulate our pollution, we’ll volunteer to clean it up — but only if governments give us money.”  This voluntary approach has been the meat industry’s playbook for decades. It’s been highly effective at shutting down the prospect of significant reforms to how we farm and what we eat, both in the international arena, like at COP, and here at home (most US environmental laws wholly or partially exempt animal factory farms).  The industry is able to sway policy in its favor because it invests a lot in doing so. It donates millions to politicians and aggressively lobbies them; it plays dirty by attacking scientists and pushing an alternative set of facts; and it portrays itself as a network of small, humble farmers and ranchers stewarding the land when, in reality, a handful of major polluters control much of the meat aisle.  The lawsuit settlements, however, are a small crack in this armor, and illustrate how when the industry is forced to defend some of its more outlandish claims, it can’t. We might eventually be able to have an honest public conversation about meat’s environmental and ethical harms, but only if more of civil society is willing to call its bluff.

‘Climate smart’ beef? After a lawsuit, Tyson agrees to drop the label.

Advocates say a recent settlement is a ‘win’ in the fight to hold industrial ag giants accountable.

Shoppers have long sought ways to make more sustainable choices at the supermarket — and for good reason: Our food system is responsible for a third of global greenhouse gas emissions. The vast majority of emissions from agriculture come from raising cows on industrial farms in order to sell burgers, steak, and other beef products. Beef production results in two and a half times as many greenhouse gases as lamb, and almost nine times as many as chicken or fish; its carbon footprint relative to other sources of protein, like cheese, eggs, and tofu, is even higher.  If you want to have a lighter impact on the planet, you could try eating less beef. (Just try it!) Otherwise, a series of recent lawsuits intends make it easier for consumers to discern what’s sustainable and what’s greenwashing — by challenging the world’s largest meat processors on their climate messaging. Tyson, which produces 20 percent of beef, chicken, and pork in the United States, has agreed to drop claims that the company has a plan to achieve “net zero” emissions by 2050 and to stop referring to beef products as “climate smart” unless verified by an independent expert.  Tyson was sued in 2024 by the Environmental Working Group, or EWG, a nonprofit dedicated to public health and environmental issues. The group alleged that Tyson’s claims were false and misleading to consumers. (Nonprofit environmental law firm Earthjustice represented EWG in the case.) Tyson denied the allegations and agreed to settle the suit.  “We landed in a place that feels satisfying in terms of what we were able to get from the settlement,” said Carrie Apfel, deputy managing attorney of Earthjustice’s Sustainable Food and Farming program. Apfel was the lead attorney on the case. According to the settlement provided by Earthjustice, over the next five years, Tyson cannot repeat previous claims that the company has a plan to achieve net zero emissions by 2050 or make new ones unless they are verified by a third-party source. Similarly, Tyson also cannot market or sell any beef products labeled as “climate smart” or “climate friendly” in the United States. “We think that this provides the consumer protections we were seeking from the lawsuit,” said Apfel.  The settlement is “a critical win for the fight against climate greenwashing by industrial agriculture,” according to Leila Yow, climate program associate at the Institute for Agricultural and Trade Policy, a nonprofit research group focused on sustainable food systems.  In the original complaint, filed in D.C. Superior Court, EWG alleged that Tyson had never even defined “climate smart beef,” despite using the term in various marketing materials. Now Tyson and EWG must meet to agree on a third-party expert that would independently verify any of the meat processor’s future “net zero” or “climate smart” claims.  Following the settlement, Apfel went a step further in a conversation with Grist, arguing that the term “climate smart” has no business describing beef that comes from an industrial food system.  “In the context of industrial beef production, it’s an oxymoron,” said the attorney. “You just can’t have climate-smart beef. Beef is the highest-emitting major food type that there is. Even if you were to reduce its emissions by 10 percent or even 30 percent, it’s still not gonna be a climate-smart choice.” A Tyson spokesperson said the company “has a long-held core value to serve as stewards of the land, animals and resources entrusted to our care” and identifies “opportunities to reduce greenhouse gas emissions across the supply chain.” The spokesperson added: “The decision to settle was made solely to avoid the expense and distraction of ongoing litigation and does not represent any admission of wrongdoing by Tyson Foods.”  The Tyson settlement follows another recent greenwashing complaint — this one against JBS Foods, the world’s largest meat processor. In 2024, New York Attorney General Letitia James sued JBS, alleging the company was misleading consumers with claims it would achieve net zero emissions by 2040.  James reached a $1.1 million settlement with the beef behemoth earlier this month. As a result of the settlement, JBS is required to update its messaging to describe reaching net zero emissions by 2040 as more of an idea or a goal than a concrete plan or commitment from the company. The two settlements underscore just how difficult it is to hold meat and dairy companies accountable for their climate and environmental impacts.  “Historically, meat and dairy companies have largely been able to fly under the radar of reporting requirements of any kind,” said Yow, of the Institute for Agriculture and Trade Policy. When these agrifood companies do share their emissions, these disclosures are often voluntary and the processes for measuring and reporting impact are not standardized.  That leads to emissions data that is often “incomplete or incorrect,” said Yow. She recently authored a report ranking 14 of the world’s largest meat and dairy companies in terms of their sustainability commitments — including efforts to report methane and other greenhouse gas emissions. Tyson and JBS tied for the lowest score out of all 14 companies. Industrial animal agriculture “has built its business model on secrecy,” said Valerie Baron, a national policy director and senior attorney at the Natural Resources Defense Council, in response to the Tyson settlement. Baron emphasized that increased transparency from meat and dairy companies is a critical first step to holding them accountable.  Yow agreed. She argued upcoming climate disclosure rules in California and the European Union have the potential to lead the way on policy efforts to measure and rein in emissions in the food system. More and better data can lead to “better collective decision making with policymakers,” she said.  But, she added: “We need to actually know what we’re talking about before we can tackle some of those things.” Editor’s note: Earthjustice and the Natural Resources Defense Council are advertisers with Grist. Advertisers have no role in Grist’s editorial decisions. This story was originally published by Grist with the headline ‘Climate smart’ beef? After a lawsuit, Tyson agrees to drop the label. on Nov 21, 2025.

Fire Disrupts UN Climate Talks Just as Negotiators Reach Critical Final Days

Fire has disrupted United Nations climate talks, forcing evacuations of several buildings with just two scheduled days left and negotiators yet to announce any major agreements

BELEM, Brazil (AP) — Fire disrupted United Nations climate talks in Brazil on Thursday, forcing evacuations of several buildings with just two scheduled days left and negotiators yet to announce any major agreements. Officials said no one was hurt.The fire was reported in an area of pavilions where sideline events are held during the annual talks, known this year as COP30. Organizers soon announced that the fire was under control, but fire officials ordered the entire site evacuated for safety checks and it wasn't clear when conference business would resume.Viliami Vainga Tone, with the Tonga delegation, had just come out of a high-level ministerial meeting when dozens of people came thundering past him shouting about the fire. He was among people pushed out of the venue by Brazilian and United Nations security forces.Tone called time the most precious resource at COP and said he was disappointed it's even shorter due to the fire.“We have to keep up our optimism. There is always tomorrow, if not the remainder of today. But at least we have a full day tomorrow,” Tone told The Associated Press.A few hours before the fire, U.N. Secretary-General António Guterres urged countries to compromise and “show willingness and flexibility to deliver results,” even if they fall short of the strongest measures some nations want.“We are down to the wire and the world is watching Belem,” Guterres said, asking negotiators to engage in good faith in the last two scheduled days of talks, which already missed a self-imposed deadline Wednesday for progress on a few key issues. The conference, with this year's edition known as COP30, frequently runs longer than its scheduled two weeks.“Communities on the front lines are watching, too — counting flooded homes, failed harvests, lost livelihoods — and asking, ‘how much more must we suffer?’” Guterres said. "They’ve heard enough excuses and demand results.” On contentious issues involving more detailed plans to phase out fossil fuels and financial aid to poorer countries, Guterres said he was “perfectly convinced” that compromise was possible and dismissed the idea that not adopting the strongest measures would be a failure.Guterres was more forceful in what he wanted rich countries to do for poor countries, especially those in need of tens of billions of dollars to adapt to the floods, droughts, storms and heat waves triggered by worsening climate change. He continued calls to triple adaptation finance from $40 billion a year to $120 billion a year.“No delegation will leave Belem with everything it wants, but every delegation has a duty to reach a balanced deal,” Guterres said.“Every country, especially the big emitters, must do more,” Guterres said.Delivering overall financial aid — with an agreed goal of $300 billion a year — is one of four interconnected issues that were initially excluded from the official agenda. The other three are: whether countries should be told to toughen their new climate plans; dealing with trade barriers over climate and improving reporting on transparency and climate progress.More than 80 countries have pushed for a detailed “road map” on how to transition away from fossil fuels, like coal, oil and natural gas, which are the chief cause of warming. That was a general but vague agreement two years ago at the COP in Dubai. Guterres kept referring to it as already being agreed to in Dubai, but did not commit to a detailed plan, which Brazilian President Luiz Inácio Lula da Silva pushed for earlier in a speech.The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.This story was produced as part of the 2025 Climate Change Media Partnership, a journalism fellowship organized by Internews’ Earth Journalism Network and the Stanley Center for Peace and Security.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Nov. 2025

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.