Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

What scientists have learned from 20 years of microplastics research

News Feed
Friday, September 20, 2024

Twenty years ago, a team of U.K. scientists sounded the alarm on a then-underappreciated problem: the breakdown of plastic litter into small, even microscopic, fragments. While many previous reports had documented the buildup of plastic bottles and bags in the natural environment, much less attention had been paid to what the scientists dubbed “microplastics.”  Due to “the rapid increase in plastic production, the longevity of plastic, and the disposable nature of plastic items,” the researchers concluded that there was “considerable potential” for microplastic pollution to become a major problem for the environment and human health. It turns out, they were right. Over the past two decades, the rate of plastic production has roughly doubled, to more than 400 million metric tons per year, about the weight of 1,200 Empire State Buildings. In the same time period, microplastics — defined as particles with a diameter less than 5 micrometers, about the width of a human hair — have exploded into the public consciousness, riding on a wave of research into the particles’ prevalence across ecosystems and in humans’ bodies. Since that 2004 paper, one of the first to use the term “microplastics,” microscopic plastic fragments have been found everywhere from deep sea sediments to the top of Mount Everest, as well as in human blood, breast milk, colons, kidneys, livers, lungs, placentas, and other body parts. Many of these findings are synthesized in a review paper published this week in the journal Science. The paper considers what we’ve learned from thousands of research articles about microplastics — including where they come from, where they end up, and how they affect organisms — and appraises regulatory options for dealing with the problem.  Research on the topic has “kind of taken off,” said Richard Thompson, a professor of marine biology at the University of Plymouth in the U.K. who was lead author on the paper from 20 years ago and the new one published on Thursday. “It’s now pretty clear that this stuff is everywhere,” he added, and that unless something changes, humanity will eventually reach a point of “wide-scale” and “irreversible” harm to the environment.  One thing that has become much clearer since the early 2000s is the sheer extent of microplastic pollution. While Thompson’s 2004 paper documented small fragments of acrylic, nylon, and polyester in coastal environments around the U.K., further investigation has shown that contamination is global. By now, microplastics have been found in virtually every ecosystem researchers have looked, including in soils, lakes, and rivers, and on remote mountains. One alarming study from 2020 found that microplastics are present in rainwater, while others have shown that the particles are ubiquitous in the indoor air we breathe. Earlier this year, the environmental consulting firm Earth Action estimated that nearly 13 million metric tons of microplastic enter the oceans and terrestrial environment annually. Tires are a major source of microplastics, which are released as they rub against the roadway. Nasir Kachroo / NurPhoto via Getty Images Where did all these microplastics come from? Early on, scientists intuited that they were generated by larger pieces of plastic debris breaking down — and this is indeed the most significant source of microplastics. But many more have been identified. Paint, for example, contains plastic polymers and may contribute as much as 1.9 million metric tons of microplastics to the marine environment annually. Some of the other most significant sources of microplastics include rubber tires, which shed microplastics as they rub against the road, and synthetic textiles, which release microfibers when worn and washed. An unknown amount of microplastic pollution comes from plastic-derived fishing nets and gear, which make up a huge fraction of plastic in the ocean more broadly. One reason scientists have found microplastics so far and wide is because there are more of them looking than ever before. But those scientists also have better technologies at their disposal. A kind of imaging called pyrolysis-gas chromatography-mass spectroscopy, for instance, has recently made it easier for researchers to identify small, dark microplastics released by the erosion of rubber tires. Other methods have made it possible to more precisely count the number of microplastics in a given sample, and to sort them by size and polymer — all of which can yield clues about their toxicity.  More researchers and better technology have also led to the detection of microplastics in living organisms. Over the past 20 years, scientists have documented microplastics in more than 1,300 aquatic and terrestrial species, and throughout the human body. Eye-catching headlines over the past few months have highlighted the particles’ presence in human testicles and penises, and this February, scientists at the University of New Mexico found microplastics in every placenta out of 62 that they tested. Scientists still don’t have a complete picture of how exactly this contamination is affecting human health, but lab studies have linked microplastics to cell inflammation and the spread of cancer. Some epidemiological evidence suggests they may be a risk factor for heart disease.  Synthetic textiles release plastic microfibers when washed and worn. Dieter Menne / Picture Alliance via Getty Images These findings help explain why microplastics have risen so quickly to the top of many average people’s priority lists. In Germany, for example, consumers in a 2023 survey said they were more concerned about microplastics in food than any other health topic, including antibiotic resistance and pesticides residues on food. Another recent survey showed that more than 90 percent of U.S. voters are also “somewhat” or “very” concerned about microplastics in the human body. Many jurisdictions are seeking to hold plastic makers responsible for the pollution they’ve caused, and at least two lawsuits against the plastics industry — one brought by the New York attorney general’s office and the other brought by the City of Baltimore — specifically call out the proliferation and health risks of microplastics. Industry groups acknowledge that humans are being exposed to microplastics, but deny that there is any evidence that they may harm human health or the environment. On its website, the Plastics Industry Association says the industry “supports more and better research on microplastics” and highlights its investments in pollution prevention and recycling infrastructure. “Everyone agrees on one thing,” the trade group says: “Plastics, large or small, don’t belong in our waterways.” On that narrow point, Thompson agrees. He thinks there’s already enough evidence of microplastics’ harms that scientists should concentrate on ways to stop microplastics from entering the environment in the first place. Several interventions have already been taken — a 2020 French law, for example, now requires new washing machines to come with microfiber filters, and the European Union is phasing glitter and other microplastics out of products like shampoo and lotion. But Thompson’s paper highlights the need for multidisciplinary approaches that take into account insights from a variety of fields, including economics and behavioral science. Initiatives to replace single-use plastics with reusable alternatives, for example, could play a major role in reducing the generation of microplastics — but they’ll only work if they’re inexpensive and convenient enough for consumers to accept them. “To get something to work, it’s not just about a chemistry experiment in a lab,” Thompson said. “It’s going to take changes in social norms, the economy, society, legal frameworks.” At the broadest level, Thompson, other scientists, and environmental advocates are supportive of measures to limit overall plastic production and ban the most problematic categories of plastic, both of which would indirectly reduce the generation of microplastics. These solutions are currently being discussed as part of  a high-profile United Nations treaty to end plastic pollution. Jen Fela, vice president of programs and communications for the nonprofit Plastic Pollution Coalition, described the treaty as “the best chance we have” to address the plastic pollution crisis. “Solutions exist,” she told Grist. “The only way to stop plastic pollution is to significantly reduce plastic production.” The fifth and final round of negotiations over the treaty is scheduled to take place this November and December in Busan, South Korea. This story was originally published by Grist with the headline What scientists have learned from 20 years of microplastics research on Sep 20, 2024.

The particles are everywhere, and they may harm human health.

Twenty years ago, a team of U.K. scientists sounded the alarm on a then-underappreciated problem: the breakdown of plastic litter into small, even microscopic, fragments. While many previous reports had documented the buildup of plastic bottles and bags in the natural environment, much less attention had been paid to what the scientists dubbed “microplastics.” 

Due to “the rapid increase in plastic production, the longevity of plastic, and the disposable nature of plastic items,” the researchers concluded that there was “considerable potential” for microplastic pollution to become a major problem for the environment and human health.

It turns out, they were right.

Over the past two decades, the rate of plastic production has roughly doubled, to more than 400 million metric tons per year, about the weight of 1,200 Empire State Buildings. In the same time period, microplastics — defined as particles with a diameter less than 5 micrometers, about the width of a human hair — have exploded into the public consciousness, riding on a wave of research into the particles’ prevalence across ecosystems and in humans’ bodies. Since that 2004 paper, one of the first to use the term “microplastics,” microscopic plastic fragments have been found everywhere from deep sea sediments to the top of Mount Everest, as well as in human blood, breast milk, colons, kidneys, livers, lungs, placentas, and other body parts.

Many of these findings are synthesized in a review paper published this week in the journal Science. The paper considers what we’ve learned from thousands of research articles about microplastics — including where they come from, where they end up, and how they affect organisms — and appraises regulatory options for dealing with the problem. 

Research on the topic has “kind of taken off,” said Richard Thompson, a professor of marine biology at the University of Plymouth in the U.K. who was lead author on the paper from 20 years ago and the new one published on Thursday. “It’s now pretty clear that this stuff is everywhere,” he added, and that unless something changes, humanity will eventually reach a point of “wide-scale” and “irreversible” harm to the environment. 

One thing that has become much clearer since the early 2000s is the sheer extent of microplastic pollution. While Thompson’s 2004 paper documented small fragments of acrylic, nylon, and polyester in coastal environments around the U.K., further investigation has shown that contamination is global. By now, microplastics have been found in virtually every ecosystem researchers have looked, including in soils, lakes, and rivers, and on remote mountains. One alarming study from 2020 found that microplastics are present in rainwater, while others have shown that the particles are ubiquitous in the indoor air we breathe. Earlier this year, the environmental consulting firm Earth Action estimated that nearly 13 million metric tons of microplastic enter the oceans and terrestrial environment annually.

Closeup of a worn black tire, with the word "Bridgestone" written on it.
Tires are a major source of microplastics, which are released as they rub against the roadway.
Nasir Kachroo / NurPhoto via Getty Images

Where did all these microplastics come from? Early on, scientists intuited that they were generated by larger pieces of plastic debris breaking down — and this is indeed the most significant source of microplastics. But many more have been identified. Paint, for example, contains plastic polymers and may contribute as much as 1.9 million metric tons of microplastics to the marine environment annually. Some of the other most significant sources of microplastics include rubber tires, which shed microplastics as they rub against the road, and synthetic textiles, which release microfibers when worn and washed. An unknown amount of microplastic pollution comes from plastic-derived fishing nets and gear, which make up a huge fraction of plastic in the ocean more broadly.

One reason scientists have found microplastics so far and wide is because there are more of them looking than ever before. But those scientists also have better technologies at their disposal. A kind of imaging called pyrolysis-gas chromatography-mass spectroscopy, for instance, has recently made it easier for researchers to identify small, dark microplastics released by the erosion of rubber tires. Other methods have made it possible to more precisely count the number of microplastics in a given sample, and to sort them by size and polymer — all of which can yield clues about their toxicity. 

More researchers and better technology have also led to the detection of microplastics in living organisms. Over the past 20 years, scientists have documented microplastics in more than 1,300 aquatic and terrestrial species, and throughout the human body. Eye-catching headlines over the past few months have highlighted the particles’ presence in human testicles and penises, and this February, scientists at the University of New Mexico found microplastics in every placenta out of 62 that they tested. Scientists still don’t have a complete picture of how exactly this contamination is affecting human health, but lab studies have linked microplastics to cell inflammation and the spread of cancer. Some epidemiological evidence suggests they may be a risk factor for heart disease

White washing machines lined up on a row on a shopping room floor, with shoppers looking at them.
Synthetic textiles release plastic microfibers when washed and worn. Dieter Menne / Picture Alliance via Getty Images

These findings help explain why microplastics have risen so quickly to the top of many average people’s priority lists. In Germany, for example, consumers in a 2023 survey said they were more concerned about microplastics in food than any other health topic, including antibiotic resistance and pesticides residues on food. Another recent survey showed that more than 90 percent of U.S. voters are also “somewhat” or “very” concerned about microplastics in the human body. Many jurisdictions are seeking to hold plastic makers responsible for the pollution they’ve caused, and at least two lawsuits against the plastics industry — one brought by the New York attorney general’s office and the other brought by the City of Baltimore — specifically call out the proliferation and health risks of microplastics.

Industry groups acknowledge that humans are being exposed to microplastics, but deny that there is any evidence that they may harm human health or the environment. On its website, the Plastics Industry Association says the industry “supports more and better research on microplastics” and highlights its investments in pollution prevention and recycling infrastructure. “Everyone agrees on one thing,” the trade group says: “Plastics, large or small, don’t belong in our waterways.”

On that narrow point, Thompson agrees. He thinks there’s already enough evidence of microplastics’ harms that scientists should concentrate on ways to stop microplastics from entering the environment in the first place. Several interventions have already been taken — a 2020 French law, for example, now requires new washing machines to come with microfiber filters, and the European Union is phasing glitter and other microplastics out of products like shampoo and lotion. But Thompson’s paper highlights the need for multidisciplinary approaches that take into account insights from a variety of fields, including economics and behavioral science. Initiatives to replace single-use plastics with reusable alternatives, for example, could play a major role in reducing the generation of microplastics — but they’ll only work if they’re inexpensive and convenient enough for consumers to accept them.

“To get something to work, it’s not just about a chemistry experiment in a lab,” Thompson said. “It’s going to take changes in social norms, the economy, society, legal frameworks.”

At the broadest level, Thompson, other scientists, and environmental advocates are supportive of measures to limit overall plastic production and ban the most problematic categories of plastic, both of which would indirectly reduce the generation of microplastics. These solutions are currently being discussed as part of  a high-profile United Nations treaty to end plastic pollution. Jen Fela, vice president of programs and communications for the nonprofit Plastic Pollution Coalition, described the treaty as “the best chance we have” to address the plastic pollution crisis.

“Solutions exist,” she told Grist. “The only way to stop plastic pollution is to significantly reduce plastic production.” The fifth and final round of negotiations over the treaty is scheduled to take place this November and December in Busan, South Korea.

This story was originally published by Grist with the headline What scientists have learned from 20 years of microplastics research on Sep 20, 2024.

Read the full story here.
Photos courtesy of

Air Quality, Not Just Fitness Level, Impacts Marathoners' Finish Times

By Dennis Thompson HealthDay ReporterTHURSDAY, Dec. 26, 2024 (HealthDay News) -- Runners put a lot of thought into how much they must eat and drink...

By Dennis Thompson HealthDay ReporterTHURSDAY, Dec. 26, 2024 (HealthDay News) -- Runners put a lot of thought into how much they must eat and drink to endure a 26.2-mile marathon, properly fueling their bodies to sustain a record-setting pace.But the quality of the air they huff and puff during endurance events could also play a key role in their performance, a new study says.Higher levels of air pollution are associated with slower average marathon finish times, according to findings published recently in the journal Sports Medicine.“Runners at that level are thinking about their gear, their nutrition, their training, the course, even the weather,” lead researcher Elvira Fleury, a doctoral student at Harvard University, said in a news release. “Our results show that those interested in optimizing athletic performance should consider the effect of air pollution, as well.”Runners’ average finish times on a marathon steadily decreased for every increase in particle pollution of one microgram per cubic meter of air, results show.Men finished 32 seconds slower on average for every increased unit of air pollution, and women finished 25 seconds slower, researchers found.These effects also appeared to be more pronounced in faster-than-average runners, researchers said.“This means that air pollution can be a health risk not just for those who are elderly or susceptible — it can negatively affect even the most healthy and well-trained among us,” senior researcher Joseph Braun, a professor of epidemiology at Brown University, said in a news release from the college.For the study, researchers analyzed data from U.S. public marathons conducted between 2003 and 2019, involving more than 1.5 million male runners and more than 1 million female runners.The research team compared the runners’ finishing times with air quality data captured on event days, including the amount of particle pollution in the air along different points of the marathon route.“This really sophisticated spatial-temporal model of particulate matter allowed us to plot pollution at every mile of every course,” Fleury said. “Without a model like this, it wouldn't have been possible to look at so many different marathons in different states across different years.”Researchers specifically looked at levels of fine particle pollution, which are airborne particles smaller than the width of a human hair or grain of fine beach sand, according to the Environmental Protection Agency.These airborne particles are typically generated by fossil fuels burned by cars and power plants, although in recent years, wildfires have contributed to such pollution.Previous studies have shown that particle air pollution is associated with overall risk of death, as well as risk of heart disease, breathing problems and lung cancer, researchers said.Air pollution could be harming marathon runners’ performance by causing increases in blood pressure, constricted blood vessels, impaired lung function, and perhaps even short-term changes in brain function, researchers speculated.“People who can complete a marathon are generally quite healthy, and we can assume they have honed their cardiorespiratory fitness,” Braun said.“This study revealed a negative impact from air pollution, even at levels below current health-based standards, on these very healthy people,” Braun continued.These findings support efforts to reduce pollution emissions by shifting motor vehicles and power plants away from fossil fuels, researchers concluded.SOURCE: Sports Medicine, journal study, Dec. 18; Brown University, news release, Dec. 18, 2024Copyright © 2024 HealthDay. All rights reserved.

Forty Years After the Bhopal Disaster, the Danger Still Remains

In many ways, we all live in Bhopal now. We must continue to fight for a future in which we all have the right to live in healthy environments.

Forty years ago this month, a Union Carbide pesticide factory in Bhopal, India, sprung a toxic gas leak, exposing half a million people to toxic fumes. Thousands of people lost their lives in the immediate aftermath, with the death toll climbing to more than 20,000 over the next two decades. Countless others, including children of survivors, continue to endure chronic health issues. In the United States, the events in Bhopal ignited a grassroots movement to expose and address the toxic chemicals in our water, air, and neighborhoods. In 1986, just two years after the disaster, this growing awareness led Congress to pass the first National Right to Know Act, which requires companies to publicly disclose their use of many toxic chemicals. In India, Bhopal victims have had a long struggle for justice. In 1989, survivors flew to a Union Carbide shareholders meeting in Houston to protest the inadequate compensation for the trauma they’d suffered. The settlement awarded each Bhopal victim was a mere $500—which a spokesperson for Dow Chemical, Union Carbide’s parent company, called “plenty good for an Indian.”  Union Carbide had the survivors arrested before they could enter the meeting. Meanwhile, their abandoned chemical factory was still leaking toxic chemicals into the surrounding neighborhoods and drinking water.  Nevertheless, Bhopal survivors never stopped fighting. They opened a free clinic to treat the intergenerational health effects caused by the disaster. They marched 500 miles between Bhopal and New Delhi. They staged hunger strikes. They created memorials to the disaster and established a museum to ensure that the horrors of their collective past are not forgotten.    The survivors even obtained an extradition order for Union Carbide’s former CEO, Warren Anderson, but the U.S. government never acted on that request. Forty years later, the factory in Bhopal has never been properly cleaned and is still leaking poison.  Unfortunately, the kinds of chemicals that flow through the veins of Bhopal survivors also flow through ours. The petrochemical industry has brought us together in a perverse solidarity, having chemically trespassed into places all over the world. According to one figure, Americans are exposed to dangerous chemical fires, leaks, and explosions about once every two days. In one dramatic example in early 2023, a rail tanker filled with vinyl chloride derailed in East Palestine, Ohio, forcing the evacuation of 2,000 residents.  Nearly all Americans now carry toxic substances known as PFAS in our bodies. These have been linked to cancer, liver and kidney disease, and immune dysfunction. And the continued burning of fossil fuels is killing millions of people each year around the world through air pollution.  Petrochemical and fossil fuel companies know they can only survive if they avoid liability for the damage they are doing to our health and the planet’s ecosystems. That’s why they are heavily invested in lobbying to prevent any such accountability. Polluting industries are certain to have strong allies in the coming Trump Administration, which plans to open even more land to fossil fuel production and, under the blueprint for conservative governance known as Project 2025, to slash environmental and public health regulations. But we can take inspiration from the people of Bhopal, whose fierce commitment to health and justice sparked a global movement. Earlier this month, on the fortieth anniversary of the Bhopal disaster, congressional allies of this movement including U.S. Senator Jeff Merkley, Democrat of Oregon, and U.S. Representatives Pramila Jayapal, Democrat of Washington, and Rashida Tlaib, Democrat of Michigan, introduced a resolution designating December 3 as National Chemical Disaster Awareness Day. “Chemical disasters are often the result of corporations cutting corners and prioritizing profits over safety,” said Merkley, who chairs the U.S. Senate Environment and Public Works subcommittee. “These catastrophes cloud communities with toxic fumes, upending lives and threatening the health and property of those living and working close by.” He called for “stronger laws to prevent chemical disasters and keep our communities and workers safe.” This growing global alliance, which has been called the largest movement for environmental health and justice in history, is fighting for a future in which everyone has the right to live in a healthy environment. It’s a movement that unites us all. Because in many ways, we all live in Bhopal now. This column was produced for Progressive Perspectives, a project of The Progressive magazine, and distributed by Tribune News Service. Gary Cohen is the president of Health Care Without Harm and a long time member of the International Campaign for Justice in Bhopal. Read more by Gary Cohen December 18, 2024 3:25 PM

Study Miscalculation Has Everyone Talking about Black Plastic Spatulas Again. Experts Are Still Concerned

The scientists behind a popular study on the health effects of flame retardants in black plastic cooking utensils and toys made a calculation error but still say their revised findings are alarming

Should you throw out your black plastic spatula? A recent study that reported alarming levels of several flame retardants in common black-colored plastic items (including cooking utensils, toys and hair products) had many people suddenly taking stock of their inky array of plastic kitchenware and considering wood or metal alternatives. And the reasons for the concern were understandable: the study’s findings, published in Chemosphere, highlighted potential health effects from exposure to the flame retardants, particularly decabromodiphenyl ether (decaBDE)—a chemical the U.S. Environmental Protection Agency banned in 2021 for its apparent links to cancer and reproductive, developmental and immunologic toxicity effects.But this week the study’s authors issued a correction that suggests exposure to decaBDE from the tested products isn’t as close to the EPA’s safety reference level as they initially thought. The decaBDE exposure they estimated from the screened products is still correct, but it’s one tenth of the reference dose. The study had miscalculated the comparison by an order of magnitude.The amount of flame retardants in such products is “not as harmful, with respect to the EPA guidance, as [the researchers] originally stated, although, with these chemicals, they may be harmful when you’re exposed to small amounts over a long period of time,” says Andrew Turner, a biogeochemist at the University of Plymouth in England, who wasn’t involved in the research and studies the disposal and recycling of plastic consumer goods. “It’s difficult to put numbers on these chemicals.”On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.The study authors issued an apology for the mistake in which they maintained that the “calculation error does not affect the overall conclusion of the paper.”“Our results still show that when toxic additives are used in plastic, they can significantly contaminate products made with recycled content that do not require flame retardancy,” says Megan Liu, a co-author of the recent study and science and policy manager at Toxic-Free Future, an environmental health research and advocacy group. “The products found in this study to contain hazardous flame retardants included items with high exposure potential, such as things that touch our food, as well as toys, which come in contact with kids.”Why might some black plastics contain flame retardants? Flame retardants are required in certain products (often including computers, TVs and other common electronic items) to meet fire safety regulations. To reduce the amount of e-waste and fossil fuels needed to make new plastics, some of these items are recycled into black plastics. But the problem is that “you could also recycle the flame retardants and other chemicals that are associated with that plastic,” says Stuart Harrad, an environmental chemist at the University of Birmingham in England, who wasn’t involved in the paper. “Now that’s fine to some degree, I suppose, if you’re only recycling the plastic into uses like TV sets, where you need to meet fire safety regulations. But the point is here is that that isn’t happening.”The new study’s main goal was to identify any flame retardant chemicals in various common products. The researchers screened 203 items, ranging from plastic sushi take-out trays to toy necklaces—and found 17 of them were contaminated with high levels of flame retardants. Fourteen of those products contained high levels of decaBDE.The U.S. has largely banned decaBDE and other polybrominated-diphenyl-ether-based flame retardants. New electronic goods use safer flame retardants, but older electronics that contain decaBDE could still be in many households or might have been only recently tossed out for recycling, Turner says. “When you talk about some electronic devices, they last quite a long time,” he adds. These older devices might only be reaching recycling plants now.The new study’s findings generally line up with past evidence that recycled plastics—and flame retardants—can end up in toys and cooking utensils, Harrad says. But it’s been unclear whether the mere presence of flame retardants in a cooking utensil pose any health threat to humans; there are many contributing factors, including the source, the dose, the duration of exposure and any other chemicals that may be present. In a 2018 study Harrad and his colleagues tested potential exposure from black plastic cooking utensils and found that uptake through the skin from simply holding them was negligible. But when they tested them in prolonged cooking experiments with hot oil, about 20 percent of the flame retardants in a utensil transferred into the oil on average. “That’s really because the oil, particularly hot oil, is going to be a pretty good way of extracting these chemicals,” Harrad says.How did the miscalculation occur?The authors of the new study estimated humans’ potential exposure to decaBDE from the plastic products by using the calculation in Harrad’s 2018 study. They applied this calculation to the median levels of decaBDE detected in the products they tested. This wound up being an estimated 34,700 nanograms per day of decaBDE. They then compared that figure with the EPA’s reference dose of 7,000 nanograms per kilogram of body weight per day. (Some researchers note that this measurement was derived from lab tests and animal models, not direct human testing). To better assess human risk, the scientists calculated a reference dose based on a 60-kg (132-pound) person and initially found 42,000 ng per day, a value alarmingly close to the 34,700 ng per day of exposure they estimated from the new data. But 7,000 multiplied by 60 is actually 420,000. This may have been a simple math error, but the correction massively reduces how close the amount of exposure is to the maximum acceptable limit.The figure with the miscalculation was “contextualizing the levels that we saw in our study, thinking that it could be helpful for people,” Liu says. “This was really just one part of our study that isn’t even part of our key findings.”She and her co-authors have emphasized that the error shouldn’t detract from one of the study’s main conclusions: that none of these flame-retardant chemicals, especially those that have been banned, should be found, in any amount, in these products in the first place.“They're probably banging their head in frustration when they found out they made that calculation error,” Harrad says, adding that the rest of their findings “were perfectly plausible.”“The study does highlight the fact that we’ve not sorted this out yet—that we’re still finding these chemicals coming through into new goods that contain recycled plastics,” Harrad says. “We do need to step up our efforts to isolate these chemicals from waste and make sure that they don't get recycled.”So should you really ditch your black plastic spatula? Harrad says you should avoid leaving it in a hot pan or pot for long periods of time. Some experts don’t recommend reheating food in black plastic containers, although studies haven’t confirmed if this causes chemicals to leach into food. Importantly, “if you see that your black utensil is damaged in any way, just [get rid of it] and go for something else,” Turner says—pieces of the plastic could potentially break off into food.When looking for new cooking ware, Turner says that it’d be more sustainable, and potentially safer, to reduce the use of black plastic items and opt for a material or color that’s more easily recyclable. Liu says wood, stainless steel or silicone products are some safer alternatives. She adds, however, that people can’t “shop” their way out of a larger societal issue. “We can’t expect that everyone can immediately switch over to safer alternatives,” Liu says. “That’s ultimately why we’ve been calling on greater regulatory action at both the corporate and government level to regulate and restrict these harmful chemicals.”

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.