Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

What Happens When Animals Cross the Road

News Feed
Thursday, April 18, 2024

As highways encroach ever further into animal habitats, drivers and wildlife are in greater danger than ever. And off the beaten path, decaying old forest roads are inflicting damage as well. “Roads are this incredibly disruptive force all over the planet that are truly changing wild animals’ lives and our own lives in almost unfathomable, unaccountable ways,” says science journalist Ben Goldfarb, author of the 2023 book Crossings: How Road Ecology Is Shaping the Future of Our Planet. Goldfarb wrote about this problem for the March 2024 issue of Smithsonian. For Earth Day, we’ll talk to him about what’s being done to make the relationship between roads and lands more harmonious, and we’ll meet Fraser Shilling—a scientist at the University of California, Davis, who’ll tell us what he’s learned from his rigorous scholarly examination of … roadkill. A transcript is below. To subscribe to “There’s More to That,” and to listen to past episodes on the devastating effects of wildfires, a NASA mission to capture asteroid dust and the 2024 North American total solar eclipse, find us on Apple Podcasts, Spotify or wherever you get your podcasts. Chris Klimek: Fraser Shilling was out driving in California one day when he saw something unusual in the road. Fraser Shilling: There was this brown, fluffy thing, and I thought, “What is that? It’s such a strange-looking animal.” Klimek: Most people don’t have a habit of stopping to check out roadkill when they see it on the highway, but this is Fraser’s job. He actually studies roadkill. More specifically, he’s the director of the Road Ecology Center at the University of California, Davis. Shilling: I’ve done some sketchy pullovers on interstates, because if it’s a porcupine, if it’s a bear, I really want to make sure that’s what it is. Klimek: Road ecology is the study of how roads and highways impact local ecosystems. So, to Fraser, a dead animal in the road is important scientific evidence. Shilling: I think it’s a really important activity, obviously, and I have to do my part. I can’t just expect other people to collect the data. Klimek: But on this day in particular, it was a false alarm. Shilling: And I pulled over, and it was a teddy bear. Klimek: From Smithsonian magazine and PRX Productions, this is “There’s More to That,” the show that may definitively solve, right here in this episode, why a chicken would want to cross a road. This week, just in time for Earth Day and spring migration season, we’ll learn all about road ecology, what our roads are doing to our ecosystems and how we can fix it. I’m Chris Klimek.Klimek: One dead squirrel or dead deer in a road might not be that much cause for concern, but if you keep finding dead deer in the same stretch of road, then there’s obviously a problem, both for the deer and for the people that use that road. Shilling: This has happened to me. I’ve driven around a curve, you don’t have time to stop if you see something around that curve, and I had, in one stretch of Highway 12 in California, three male deer within a mile of each other. They’re just standing in or about to enter the road. Very alarming. I don’t think I would’ve died. I was probably only going 50, but it definitely would’ve been a noticeable impact on my life. But most of the animals are not a safety concern. Most of the animals that are being hit are smaller, like newts. There are places where newts are migrating across roads between where they spend their adult phase and where they’re going to reproduce. They’re just annihilated by traffic. And some areas, you think, “Well, they’ve always been doing that, so what’s the big deal?” But where it becomes a big deal is that you get fewer and fewer and fewer newts over time. Part of that is just loss from the regular traffic that’s occurring, but also, as you increase traffic, you’re increasing the number of newts that are getting killed, and, eventually, you’re going to wipe out the population. These are real-time ecological disasters, some of them. Klimek: Do people generally get it, or does it take a bit of explaining for you to say like, “No, this is actually valuable data that we can collect and learn from?” Shilling: Well, at the beginning, as you might imagine, there were people trying to be funny, ways of asking questions. I had a SiriusXM station interview, probably the weirdest media discussion about roadkill that I’ve had. But it was interesting. You’ve got these shock jocks, initially they were making fun of it, but then they started to get into it.Ben Goldfarb: There are just so many different ways in which our transportation infrastructure disrupts animal lives. Klimek: Ben Goldfarb is the author of an acclaimed book called Crossings: How Road Ecology Is Shaping the Future of Our Planet. Goldfarb: The dead deer or raccoon or squirrel we’ve all seen by the side of the road, that’s just the tip of the iceberg. Roads are this incredibly disruptive force all over the planet that are truly changing wild animals’ lives and our own lives in almost unfathomable, unaccountable ways. Generally, roads are enormous sources of pollution, right? Our cars are constantly bleeding cadmium and copper and zinc and microplastics. One of the big issues that scientists have only recently discovered is that tire particles are a huge problem. I think there’s something like 6 million tons of tire particles that enter the environment every year, and they contain this chemical called 6PPD, which kills salmon in huge numbers. Another big issue is invasive species. In Oregon, there’s a fungus that actually rides in truck tire treads and gets dispersed up the road network that way and kills trees. There’s all kinds of novel agents, both chemical and biological, that are using these roads to spread through our forests. Klimek: These particularly toxic roads, are they concentrated in a few geographic areas, or are they dispersed all over? Goldfarb: I think it’s a pretty widespread problem, but road salt, which is in some ways probably the most transformative, consequential pollutant along our road networks, and obviously that’s something that we use as a de-icing chemical. So that’s really a Northern issue. I think Minnesota is the most profligate user of de-icing salt, and that’s turning all of these freshwater rivers and lakes and streams into functionally brackish estuaries. There are some cases where ocean crabs have entered these freshwater ecosystems, because that’s just how salty they’ve gotten. And then, another big issue, too, is that: Look, animals like salt. If you’ve got these salty roadsides and you’re luring all of these deer and moose and other critters to the roadside, well that’s also a huge roadkill issue. Klimek: Are there other de-icing agents available that don’t have such severe consequences for the environment? Goldfarb: Beet juice has been used in some places. It doesn’t smell great, so it hasn’t really caught on, and it’s also a little bit eerie to see bright red bloody-looking roads that are covered in beet juice. So the quest for a universally beloved, non-salt de-icer continues. Klimek: Yeah. On the beet juice note, I do use a citrus-based chain degreaser on my bicycle. It’s ground up orange peels or something that they claim is eco-friendly and as effective as any artificial chemical. So I hope that’s right. Goldfarb: Well, the fact that you’re getting around via bicycle, that’s a big win right there. So, Chris, you’re doing pretty good, man. Klimek: Is there any way in which our roads are a good thing for animals? Goldfarb: It depends who you are, right? The scavengers, for example, the turkey vultures or the coyotes that use roadkill as this resource, essentially. Or think about the Midwest, we’ve turned all of the landscape into corn and soy monoculture, and some of the only strips of native prairie vegetation remaining are those roadsides and road medians that end up being pretty good habitat for animals like monarch butterflies. Roads are ultimately ecosystems in their own right, and every ecosystem has winners and losers. Klimek: Yeah. You opened the door to this a little bit when you mentioned de-icing salt, but how do roads alter biodiversity more broadly than just animals being struck by cars? Goldfarb: I think a lot about that barrier effect. These walls of traffic that animals don’t even attempt to cross in many places. Lots of big interstate highways actually have very little roadkill, because animals never even try to cross the highway. And yet, they’re having enormous impacts on wildlife distribution. You end up, in some cases, with very inbred populations. Famously, in Southern California, there’s this cluster of mountain lions living near Los Angeles surrounded by freeways. And those animals have ended up having to mate with their own daughters and granddaughters and even great-granddaughters because they just can’t cross the highway to escape this little island of habitat, and no new animals can cross to enter the population. So even without killing animals directly, these roads are dramatically changing their lives and influencing where they can live and who they can mate with. Klimek: So, conversely, how are humans impacted by animals in the roadway? Goldfarb: Roadkill is a really dangerous event for drivers as well as for animals. There are up to 2 million large animal crashes in this country every year, most of them with white-tailed deer, and several hundred drivers die in those incidents. And road collisions with animals are costing society more than $8 billion every year, in vehicle repairs and hospital bills and tow trucks and so on. This epidemic of wildlife-vehicle collisions is a human public health and safety crisis, in a lot of ways. Klimek: Are there other ways in which animals have adapted to this influx of road construction? Goldfarb: Certainly animals have ingenious strategies for living alongside all of this infrastructure. In Chicago, there’s this very famous population of urban coyotes that looks both ways and crosses at the crosswalks. They’re very intelligent animals. There are even cases of evolution that have occurred due to road construction. There’s a very famous example in Nebraska where cliff swallows, which are those birds who build their little mud nests on highway overpasses and bridges, they’ve actually evolved over time to have shorter wings. Because if you have a long wing as a bird, that’s good for flying long, straight directions, whereas having a short wing is good for maneuverability and making lots of tight rolls and turns to avoid an 18-wheeler. The long-wing swallows have gotten weeded from the population by roadkill, and the shorter-wing swallows remain, and now the whole population is becoming less susceptible to roadkill. That’s just incredible to think about, right? That evolution is usually this process that unfolds over the course of thousands or millions of years, but roads and cars are such a powerful selective pressure that they’re literally driving evolution in a matter of decades. Klimek: Have road construction techniques evolved over the decades? Are we building them in a more eco-conscious way now or not so much? Goldfarb: It is true that roads are one of the technologies that are least amenable to disruption. One thing we’ve become much more cognizant of, and better about, is the need to build wildlife crossings: overpasses and underpasses and tunnels that allow animals to safely cross highways. And, typically, whenever there’s a big highway modification or expansion, they’ll include some wildlife crossings. We’ve got the equipment out there already—let’s just put it in a tunnel or something like that to facilitate animal movements. Klimek: And from what we’ve seen, do animals use these crossings when we build them? Do they figure out that’s a safer way to get across the eight lanes or however many there are? Goldfarb: Absolutely. Yeah, crossings are extremely effective. Typically, they reduce vehicle collisions by 90 percent or so, in part because, typically, you’ve got a crossing and then you’ve got roadside fences that funnel the animals to the crossings and allow them to safely cross the highway. So there’s lots of research showing that animals definitely use these things. And in many cases, they actually pay for themselves. Sometimes the transportation department will propose a new $5 million wildlife overpass, and everybody shakes their head about the idea of spending $5 million on helping elk cross a highway. But actually, by preventing all of these really dangerous, expensive crashes with animals and vehicles, these crossings are actually recouping their own construction costs. And that’s a big part of the reason that so many transportation departments around the country are really embracing them. Klimek: What do these crossings look like? Are they similar to what a pedestrian bridge or tunnel would be? Goldfarb: In some ways, yeah. The basic technology isn’t all that different, but you want to make them look like habitat. You want an animal to feel comfortable crossing this novel, weird structure. So typically, the overpasses especially will have shrubs and even whole trees and dirt. And one of the cool things that’s happening now in road ecology is that we’re thinking about different species. It used to be that engineers and biologists were very focused on the big animals, the deer and the elk. And now we’re also thinking, “Well, wait a second, what does a meadow vole or a snake or a lizard need to feel comfortable on these crossings?” You tend to see lots of rock piles and log jams and other little micro-habitat features that might induce an animal to run across. Klimek: Yeah. I know you mentioned deer specifically as one of the major sources of roadkill and accidents. Are there other significant categories of animals that changed their patterns as a result of these crossings being made available? Goldfarb: There are incredibly successful crossings for grizzly bears and pronghorn antelope and salamanders. There have been crossings built for this incredible diversity of species, and they’re really effective. But it’s important to really think about what different species need. For example, the difference between black bears and grizzly bears. Grizzly bears were plains animals who lived out into the prairies. That was where Lewis and Clark saw them in eastern Montana. So they like to be out in the open. They like having a big, open bridge to walk across so they can confront their enemies with their power and speed. Whereas black bears are more forest dwellers and more comfortable in tighter spaces, potentially, and they’re typically happier using smaller underpasses that a grizzly bear would probably avoid. So different species just have different requirements for these crossing structures, and that’s one of the things that road ecologists do, is to think, “OK, in this given place where we want to build one of these crossings, what are the species we have to account for, and how do we account for them in the design of this structure?” Klimek: Salamanders is not one of the species I was picturing as I was reading the excerpt from your book Crossings. So tell us more about that. How do you get a salamander to cross where you want it to cross? Goldfarb: Amphibians, even though they’re small, they’re also migratory. They travel proportionately very large distances, and they’re typically moving between their upland forest habitat, going down to their breeding ponds, and they’re often moving in large numbers on these warm, wet spring nights. The problem is that we tend to build our roads in the same low-lying areas where water collects and amphibians breed. So in many cases, you get these big squishing events of salamanders and frogs and toads and other amphibians. Again, those warm, wet spring nights in the Northeast are just the most dangerous times. Yeah, the phrase “massive squishing event” is actually in a road ecology textbook. Klimek: Oh, wow. Goldfarb: There are a number of great salamander and frog tunnels, these little narrow passages that go under roadways. You could drive over them a thousand times and never know they were there, but they do tend to work really well. Klimek: The roads we drive on every day are only one of Ben’s concerns. Ben recently wrote an article for Smithsonian magazine about roads that have fallen out of use. He says that you can’t just leave an old, decaying road to sit and expect nature to reclaim it. Goldfarb: There’s just this huge road density out there. In some places, there are more roads per square mile in national forests than there are in New York City, which is pretty hard to fathom. And those roads, even though they’re out in the middle of nowhere, they still have a big environmental impact. What my story’s about, in a lot of ways is, OK, what do we do about those impacts? If roads cause problems in these otherwise wild areas, can we eliminate those roads? And that’s what the Forest Service and its many partner organizations are doing in many cases, is getting in there with the same heavy machinery that built the roads—in some cases, the big, yellow Tonka toys—and just tearing that roadbed up and allowing nature to reclaim it. Which is really exciting. Klimek: So generally, if one wants to decommission a road safely with minimal environmental impact, how could that be done? Goldfarb: One of the challenges is that often the soil is really compacted. You’ve got 30 years of big, heavy logging trucks rolling down these dirt roads, and so all of that pressure and weight over time has really compacted the soil. So it’s super-hard for any vegetation to really effectively take root there. What firms that do road decommissioning and the Forest Service does is rip up that roadbed to loosen up the soil, and then you can replant it, and that vegetation will have a much greater chance of success. It’s funny, I visited a lot of these sites where road decommissioning was in progress, and it looks like a war zone. The earth is just ripped up everywhere, and there are saplings lying over the road that they tear up and use to cover the roads so that seedlings and wildflowers and stuff can shelter in the vegetative cover. So the whole thing looks like a tornado went through or something like that. But you come back in 20 years, and it truly looks like a forest. I visited a bunch of sites in Idaho and Montana where roads were decommissioned 20 or 30 years ago, and you truly would have no idea that a road had ever been there, if there wasn’t a scientist telling you so. So it can be pretty inspiring. Klimek: What are the barriers to this always being done in the most conscientious way? Expense? Politics? A combination of factors? Why doesn’t this always happen the way we might wish? Goldfarb: You put your finger on the two big ones. Expense and politics. The expense, the U.S. Forest Service, this giant federal agency that manages something like 190 million acres of American public land, is also the largest road manager in the world, I think. Unbeknownst to most people, the Forest Service has something like 370,000 miles of road. You get to the moon and most of the way back on Forest Service roads. In general, you’re looking at $5,000 to $15,000 per mile of decommissioned road—that tends to add up quickly. The Forest Service is also chronically a funding-challenged agency. So much of its budget goes toward fighting wildfires, and there’s often very little left over for anything else, including road decommissioning. So expense is definitely a big one. And then there’s also, oftentimes the Forest Service proposes closing some roads, and there’s a lot of uproar from locals who don’t want to see those roads taken out of commission. So it can definitely be politically contentious at times. Klimek: To back up a few decades, how did the Forest Service become the keeper of these tens of thousands of miles of road? Goldfarb: Initially, a lot of those roads were built with really good intentions. The Forest Service was created in the early 1900s, and its first generation of rangers basically said, “We have been tasked with stewarding these forests, and we need roads to do that. We need to be able to fight fires and to remove trees that have been killed by beetles and keep an eye on the elk population. We need these roads to manage this land.” That was where a lot of those early roads came from, I would say. And then in the 1950s, after World War II, there was this huge economic boom, a lot of home construction going on. And a lot of the private timber lands in America had been clear-cut already, and those national forests were the site of all of this industrial logging. And suddenly those early roads, those Forest Service roads, became the basis for this vast new network of logging roads. And in many cases, it was these private timber companies that the Forest Service was effectively paying to build logging roads on public land. And so that’s where, when we talk about forests that have higher road densities than New York City, what we’re talking about are these incredibly dense networks of logging roads. One biologist told me that you go to some forests and it looks like the loggers must have driven to every single tree, because the roads are just so thick. And it’s actually very poignant to read the journals and memoirs of some of these early Forest Service rangers, as I did, because they talk about the pain of seeing these forests that they love just totally overrun with roads that they helped facilitate. Klimek: Here’s the good news: Ben says there’s a lot of cause for optimism right now. Goldfarb: Earlier we were talking about funding being one of the primary limitations for road decommissioning. And now, there’s just a lot more funding available, really thanks to these two giant pieces of legislation passed under the Biden administration, the Bipartisan Infrastructure Act and the Inflation Reduction Act. And both of those giant laws have different pots of money embedded within them that can be used for road decommissioning. In the Infrastructure Act, there’s this thing called the Legacy Roads and Trails Program, which is, basically, $250 million for road restoration and rehabilitation. And then, in the IRA, the Inflation Reduction Act, there’s also all of this money that can be used by the Bureau of Land Management, which is the Forest Service’s sister agency, for road restoration. So there are just these big new pots of money coming online now and being distributed. And everybody I talked to for this story was just really excited about the prospects for road removal in the years ahead. Klimek: That Smithsonian story you wrote was really focused on the removal of forest roads, rural roads, but what about the freeways and roads we were discussing earlier that remain heavily used? Are there ways of reducing the environmental harm that they cause? Goldfarb: Yeah, it’s a great question. I think that one of the exciting things in that bipartisan Infrastructure Act that also has money for road removal, is that it also has $350 million for those new wildlife crossings that we were talking about. Which is easily the largest pot of money for animal passages ever put together. Historically, it’s been the Western states that have built a lot of these animal passages, but now states like Pennsylvania and South Dakota and Nebraska are getting interested. I think that in the next five to ten years, thanks to this big federal grant program, we’re going to have lots more wildlife crossings popping up all over the country. And granted, that’s not going to solve the problem of roads in nature, obviously, but hopefully it’ll at least help to alleviate some of the really negative impacts. Klimek: Smithsonian magazine contributor Ben Goldfarb is the author of Crossings: How Road Ecology Is Shaping the Future of Our Planet. This has been a really illuminating conversation, Ben. Thank you. Goldfarb: Thank you so much, Chris. Yeah, I appreciate your time and interest. Klimek: To read Goldfarb’s latest article in Smithsonian about safely decommissioning roads, and to learn more about how to report roadkill sightings to Shilling’s database at UC Davis, check out the links in our show notes.Klimek: And speaking of Shilling, we couldn’t leave you without sharing one more story from him. We like to end all of our episodes with a “dinner party fact.” This is an anecdote or piece of information to stoke the conversation at your next social gathering. And for me, well, I can’t stop thinking about what Fraser told me about the culinary aspect of his roadkill research. Hold onto your dinners, folks. Shilling: It falls a little bit into that shock jock kind of category of, “Oh, roadkill is so weird. What is that? What are you talking about?” But there’s a huge population of people that do collect and eat animals fresh off the road. I’ve done that. I’ve stopped on the side of I-5, 101, 395, and I have sliced out parts of deer from a fresh carcass and taken them home. Klimek: Don’t knock it until you’ve tried it, I guess. Shilling: Steak in a grocery store or chicken, how many days ago was that thing alive? But I would bet anything that the meat I’m cutting out from inside a deer that was killed a day ago has way less bacteria on it than that steak in a supermarket. Klimek: After the New York Times published an article about his research in 2010, Fraser got an unexpected call. Shilling: A chef in San Francisco called me up and said, “Hey, I do these unique meals for wealthy people, and we want to do a really just incredible dinner made from roadkill. Can I use your system to find out where to get something?” And I thought about it and I said, “Yeah, actually,” because our reporting’s real-time. So I said, “Well, how about this?” I knew he was in San Francisco, “I’m going to look at our system, as soon as something comes in that looks like it was probably fresh, especially if there’s a photograph, I’m going to forward the location to you, and you can just zip out there and go get it.” And he did. He did exactly that, and did a meal of raccoon, which I was kind of surprised about. And rabbit, which makes more sense, based on that data collection. It was not at all legal, but definitely interesting. Klimek: “There’s More to That” is not legal advice, but it is a production of Smithsonian magazine and PRX Productions. From the magazine, our team is me, Debra Rosenberg and Brian Wolly. From PRX, our team is Jessica Miller, Genevieve Sponsler, Adriana Rozas Rivera, Ry Dorsey and Edwin Ochoa. The executive producer of PRX Productions is Jocelyn Gonzales. Our episode artwork is by Emily Lankiewicz. Fact-checking by Stephanie Abramson. Our music is from APM Music. I’m Chris Klimek. Thanks for listening. Get the latest Science stories in your inbox.

Our byways are an unnatural incursion into the natural world, especially when they’re allowed to fall into disuse. Meet a roadkill scientist and a journalist tracking how roads mess with nature—and what we can do about it

Smithmag-Podcast-S02-Ep05-Roads-article.jpg

As highways encroach ever further into animal habitats, drivers and wildlife are in greater danger than ever. And off the beaten path, decaying old forest roads are inflicting damage as well. “Roads are this incredibly disruptive force all over the planet that are truly changing wild animals’ lives and our own lives in almost unfathomable, unaccountable ways,” says science journalist Ben Goldfarb, author of the 2023 book Crossings: How Road Ecology Is Shaping the Future of Our Planet.

Goldfarb wrote about this problem for the March 2024 issue of Smithsonian. For Earth Day, we’ll talk to him about what’s being done to make the relationship between roads and lands more harmonious, and we’ll meet Fraser Shilling—a scientist at the University of California, Davis, who’ll tell us what he’s learned from his rigorous scholarly examination of … roadkill.

A transcript is below. To subscribe to “There’s More to That,” and to listen to past episodes on the devastating effects of wildfires, a NASA mission to capture asteroid dust and the 2024 North American total solar eclipse, find us on Apple Podcasts, Spotify or wherever you get your podcasts.


Chris Klimek: Fraser Shilling was out driving in California one day when he saw something unusual in the road.

Fraser Shilling: There was this brown, fluffy thing, and I thought, “What is that? It’s such a strange-looking animal.”

Klimek: Most people don’t have a habit of stopping to check out roadkill when they see it on the highway, but this is Fraser’s job. He actually studies roadkill. More specifically, he’s the director of the Road Ecology Center at the University of California, Davis.

Shilling: I’ve done some sketchy pullovers on interstates, because if it’s a porcupine, if it’s a bear, I really want to make sure that’s what it is.

Klimek: Road ecology is the study of how roads and highways impact local ecosystems. So, to Fraser, a dead animal in the road is important scientific evidence.

Shilling: I think it’s a really important activity, obviously, and I have to do my part. I can’t just expect other people to collect the data.

Klimek: But on this day in particular, it was a false alarm.

Shilling: And I pulled over, and it was a teddy bear.

Klimek: From Smithsonian magazine and PRX Productions, this is “There’s More to That,” the show that may definitively solve, right here in this episode, why a chicken would want to cross a road. This week, just in time for Earth Day and spring migration season, we’ll learn all about road ecology, what our roads are doing to our ecosystems and how we can fix it. I’m Chris Klimek.


Klimek: One dead squirrel or dead deer in a road might not be that much cause for concern, but if you keep finding dead deer in the same stretch of road, then there’s obviously a problem, both for the deer and for the people that use that road.

Shilling: This has happened to me. I’ve driven around a curve, you don’t have time to stop if you see something around that curve, and I had, in one stretch of Highway 12 in California, three male deer within a mile of each other. They’re just standing in or about to enter the road. Very alarming. I don’t think I would’ve died. I was probably only going 50, but it definitely would’ve been a noticeable impact on my life. But most of the animals are not a safety concern. Most of the animals that are being hit are smaller, like newts. There are places where newts are migrating across roads between where they spend their adult phase and where they’re going to reproduce. They’re just annihilated by traffic.

And some areas, you think, “Well, they’ve always been doing that, so what’s the big deal?” But where it becomes a big deal is that you get fewer and fewer and fewer newts over time. Part of that is just loss from the regular traffic that’s occurring, but also, as you increase traffic, you’re increasing the number of newts that are getting killed, and, eventually, you’re going to wipe out the population. These are real-time ecological disasters, some of them.

Klimek: Do people generally get it, or does it take a bit of explaining for you to say like, “No, this is actually valuable data that we can collect and learn from?”

Shilling: Well, at the beginning, as you might imagine, there were people trying to be funny, ways of asking questions. I had a SiriusXM station interview, probably the weirdest media discussion about roadkill that I’ve had. But it was interesting. You’ve got these shock jocks, initially they were making fun of it, but then they started to get into it.


Ben Goldfarb: There are just so many different ways in which our transportation infrastructure disrupts animal lives.

Klimek: Ben Goldfarb is the author of an acclaimed book called Crossings: How Road Ecology Is Shaping the Future of Our Planet.

Goldfarb: The dead deer or raccoon or squirrel we’ve all seen by the side of the road, that’s just the tip of the iceberg. Roads are this incredibly disruptive force all over the planet that are truly changing wild animals’ lives and our own lives in almost unfathomable, unaccountable ways.

Generally, roads are enormous sources of pollution, right? Our cars are constantly bleeding cadmium and copper and zinc and microplastics. One of the big issues that scientists have only recently discovered is that tire particles are a huge problem. I think there’s something like 6 million tons of tire particles that enter the environment every year, and they contain this chemical called 6PPD, which kills salmon in huge numbers.

Another big issue is invasive species. In Oregon, there’s a fungus that actually rides in truck tire treads and gets dispersed up the road network that way and kills trees. There’s all kinds of novel agents, both chemical and biological, that are using these roads to spread through our forests.

Klimek: These particularly toxic roads, are they concentrated in a few geographic areas, or are they dispersed all over?

Goldfarb: I think it’s a pretty widespread problem, but road salt, which is in some ways probably the most transformative, consequential pollutant along our road networks, and obviously that’s something that we use as a de-icing chemical. So that’s really a Northern issue. I think Minnesota is the most profligate user of de-icing salt, and that’s turning all of these freshwater rivers and lakes and streams into functionally brackish estuaries. There are some cases where ocean crabs have entered these freshwater ecosystems, because that’s just how salty they’ve gotten.

And then, another big issue, too, is that: Look, animals like salt. If you’ve got these salty roadsides and you’re luring all of these deer and moose and other critters to the roadside, well that’s also a huge roadkill issue.

Klimek: Are there other de-icing agents available that don’t have such severe consequences for the environment?

Goldfarb: Beet juice has been used in some places. It doesn’t smell great, so it hasn’t really caught on, and it’s also a little bit eerie to see bright red bloody-looking roads that are covered in beet juice. So the quest for a universally beloved, non-salt de-icer continues.

Klimek: Yeah. On the beet juice note, I do use a citrus-based chain degreaser on my bicycle. It’s ground up orange peels or something that they claim is eco-friendly and as effective as any artificial chemical. So I hope that’s right.

Goldfarb: Well, the fact that you’re getting around via bicycle, that’s a big win right there. So, Chris, you’re doing pretty good, man.

Klimek: Is there any way in which our roads are a good thing for animals?

Goldfarb: It depends who you are, right? The scavengers, for example, the turkey vultures or the coyotes that use roadkill as this resource, essentially. Or think about the Midwest, we’ve turned all of the landscape into corn and soy monoculture, and some of the only strips of native prairie vegetation remaining are those roadsides and road medians that end up being pretty good habitat for animals like monarch butterflies. Roads are ultimately ecosystems in their own right, and every ecosystem has winners and losers.

Klimek: Yeah. You opened the door to this a little bit when you mentioned de-icing salt, but how do roads alter biodiversity more broadly than just animals being struck by cars?

Goldfarb: I think a lot about that barrier effect. These walls of traffic that animals don’t even attempt to cross in many places. Lots of big interstate highways actually have very little roadkill, because animals never even try to cross the highway. And yet, they’re having enormous impacts on wildlife distribution. You end up, in some cases, with very inbred populations. Famously, in Southern California, there’s this cluster of mountain lions living near Los Angeles surrounded by freeways. And those animals have ended up having to mate with their own daughters and granddaughters and even great-granddaughters because they just can’t cross the highway to escape this little island of habitat, and no new animals can cross to enter the population.

So even without killing animals directly, these roads are dramatically changing their lives and influencing where they can live and who they can mate with.

Klimek: So, conversely, how are humans impacted by animals in the roadway?

Goldfarb: Roadkill is a really dangerous event for drivers as well as for animals. There are up to 2 million large animal crashes in this country every year, most of them with white-tailed deer, and several hundred drivers die in those incidents. And road collisions with animals are costing society more than $8 billion every year, in vehicle repairs and hospital bills and tow trucks and so on. This epidemic of wildlife-vehicle collisions is a human public health and safety crisis, in a lot of ways.

Klimek: Are there other ways in which animals have adapted to this influx of road construction?

Goldfarb: Certainly animals have ingenious strategies for living alongside all of this infrastructure. In Chicago, there’s this very famous population of urban coyotes that looks both ways and crosses at the crosswalks. They’re very intelligent animals.

There are even cases of evolution that have occurred due to road construction. There’s a very famous example in Nebraska where cliff swallows, which are those birds who build their little mud nests on highway overpasses and bridges, they’ve actually evolved over time to have shorter wings. Because if you have a long wing as a bird, that’s good for flying long, straight directions, whereas having a short wing is good for maneuverability and making lots of tight rolls and turns to avoid an 18-wheeler. The long-wing swallows have gotten weeded from the population by roadkill, and the shorter-wing swallows remain, and now the whole population is becoming less susceptible to roadkill.

That’s just incredible to think about, right? That evolution is usually this process that unfolds over the course of thousands or millions of years, but roads and cars are such a powerful selective pressure that they’re literally driving evolution in a matter of decades.

Klimek: Have road construction techniques evolved over the decades? Are we building them in a more eco-conscious way now or not so much?

Goldfarb: It is true that roads are one of the technologies that are least amenable to disruption. One thing we’ve become much more cognizant of, and better about, is the need to build wildlife crossings: overpasses and underpasses and tunnels that allow animals to safely cross highways. And, typically, whenever there’s a big highway modification or expansion, they’ll include some wildlife crossings. We’ve got the equipment out there already—let’s just put it in a tunnel or something like that to facilitate animal movements.

Klimek: And from what we’ve seen, do animals use these crossings when we build them? Do they figure out that’s a safer way to get across the eight lanes or however many there are?

Goldfarb: Absolutely. Yeah, crossings are extremely effective. Typically, they reduce vehicle collisions by 90 percent or so, in part because, typically, you’ve got a crossing and then you’ve got roadside fences that funnel the animals to the crossings and allow them to safely cross the highway. So there’s lots of research showing that animals definitely use these things.

And in many cases, they actually pay for themselves. Sometimes the transportation department will propose a new $5 million wildlife overpass, and everybody shakes their head about the idea of spending $5 million on helping elk cross a highway. But actually, by preventing all of these really dangerous, expensive crashes with animals and vehicles, these crossings are actually recouping their own construction costs. And that’s a big part of the reason that so many transportation departments around the country are really embracing them.

Klimek: What do these crossings look like? Are they similar to what a pedestrian bridge or tunnel would be?

Goldfarb: In some ways, yeah. The basic technology isn’t all that different, but you want to make them look like habitat. You want an animal to feel comfortable crossing this novel, weird structure. So typically, the overpasses especially will have shrubs and even whole trees and dirt.

And one of the cool things that’s happening now in road ecology is that we’re thinking about different species. It used to be that engineers and biologists were very focused on the big animals, the deer and the elk. And now we’re also thinking, “Well, wait a second, what does a meadow vole or a snake or a lizard need to feel comfortable on these crossings?” You tend to see lots of rock piles and log jams and other little micro-habitat features that might induce an animal to run across.

Klimek: Yeah. I know you mentioned deer specifically as one of the major sources of roadkill and accidents. Are there other significant categories of animals that changed their patterns as a result of these crossings being made available?

Goldfarb: There are incredibly successful crossings for grizzly bears and pronghorn antelope and salamanders. There have been crossings built for this incredible diversity of species, and they’re really effective. But it’s important to really think about what different species need.

For example, the difference between black bears and grizzly bears. Grizzly bears were plains animals who lived out into the prairies. That was where Lewis and Clark saw them in eastern Montana. So they like to be out in the open. They like having a big, open bridge to walk across so they can confront their enemies with their power and speed. Whereas black bears are more forest dwellers and more comfortable in tighter spaces, potentially, and they’re typically happier using smaller underpasses that a grizzly bear would probably avoid.

So different species just have different requirements for these crossing structures, and that’s one of the things that road ecologists do, is to think, “OK, in this given place where we want to build one of these crossings, what are the species we have to account for, and how do we account for them in the design of this structure?”

Klimek: Salamanders is not one of the species I was picturing as I was reading the excerpt from your book Crossings. So tell us more about that. How do you get a salamander to cross where you want it to cross?

Goldfarb: Amphibians, even though they’re small, they’re also migratory. They travel proportionately very large distances, and they’re typically moving between their upland forest habitat, going down to their breeding ponds, and they’re often moving in large numbers on these warm, wet spring nights. The problem is that we tend to build our roads in the same low-lying areas where water collects and amphibians breed. So in many cases, you get these big squishing events of salamanders and frogs and toads and other amphibians. Again, those warm, wet spring nights in the Northeast are just the most dangerous times. Yeah, the phrase “massive squishing event” is actually in a road ecology textbook.

Klimek: Oh, wow.

Goldfarb: There are a number of great salamander and frog tunnels, these little narrow passages that go under roadways. You could drive over them a thousand times and never know they were there, but they do tend to work really well.

Klimek: The roads we drive on every day are only one of Ben’s concerns. Ben recently wrote an article for Smithsonian magazine about roads that have fallen out of use. He says that you can’t just leave an old, decaying road to sit and expect nature to reclaim it.

Goldfarb: There’s just this huge road density out there. In some places, there are more roads per square mile in national forests than there are in New York City, which is pretty hard to fathom. And those roads, even though they’re out in the middle of nowhere, they still have a big environmental impact.

What my story’s about, in a lot of ways is, OK, what do we do about those impacts? If roads cause problems in these otherwise wild areas, can we eliminate those roads? And that’s what the Forest Service and its many partner organizations are doing in many cases, is getting in there with the same heavy machinery that built the roads—in some cases, the big, yellow Tonka toys—and just tearing that roadbed up and allowing nature to reclaim it. Which is really exciting.

Klimek: So generally, if one wants to decommission a road safely with minimal environmental impact, how could that be done?

Goldfarb: One of the challenges is that often the soil is really compacted. You’ve got 30 years of big, heavy logging trucks rolling down these dirt roads, and so all of that pressure and weight over time has really compacted the soil. So it’s super-hard for any vegetation to really effectively take root there. What firms that do road decommissioning and the Forest Service does is rip up that roadbed to loosen up the soil, and then you can replant it, and that vegetation will have a much greater chance of success.

It’s funny, I visited a lot of these sites where road decommissioning was in progress, and it looks like a war zone. The earth is just ripped up everywhere, and there are saplings lying over the road that they tear up and use to cover the roads so that seedlings and wildflowers and stuff can shelter in the vegetative cover. So the whole thing looks like a tornado went through or something like that.

But you come back in 20 years, and it truly looks like a forest. I visited a bunch of sites in Idaho and Montana where roads were decommissioned 20 or 30 years ago, and you truly would have no idea that a road had ever been there, if there wasn’t a scientist telling you so. So it can be pretty inspiring.

Klimek: What are the barriers to this always being done in the most conscientious way? Expense? Politics? A combination of factors? Why doesn’t this always happen the way we might wish?

Goldfarb: You put your finger on the two big ones. Expense and politics. The expense, the U.S. Forest Service, this giant federal agency that manages something like 190 million acres of American public land, is also the largest road manager in the world, I think. Unbeknownst to most people, the Forest Service has something like 370,000 miles of road. You get to the moon and most of the way back on Forest Service roads.

In general, you’re looking at $5,000 to $15,000 per mile of decommissioned road—that tends to add up quickly. The Forest Service is also chronically a funding-challenged agency. So much of its budget goes toward fighting wildfires, and there’s often very little left over for anything else, including road decommissioning. So expense is definitely a big one.

And then there’s also, oftentimes the Forest Service proposes closing some roads, and there’s a lot of uproar from locals who don’t want to see those roads taken out of commission. So it can definitely be politically contentious at times.

Klimek: To back up a few decades, how did the Forest Service become the keeper of these tens of thousands of miles of road?

Goldfarb: Initially, a lot of those roads were built with really good intentions. The Forest Service was created in the early 1900s, and its first generation of rangers basically said, “We have been tasked with stewarding these forests, and we need roads to do that. We need to be able to fight fires and to remove trees that have been killed by beetles and keep an eye on the elk population. We need these roads to manage this land.” That was where a lot of those early roads came from, I would say.

And then in the 1950s, after World War II, there was this huge economic boom, a lot of home construction going on. And a lot of the private timber lands in America had been clear-cut already, and those national forests were the site of all of this industrial logging. And suddenly those early roads, those Forest Service roads, became the basis for this vast new network of logging roads. And in many cases, it was these private timber companies that the Forest Service was effectively paying to build logging roads on public land.

And so that’s where, when we talk about forests that have higher road densities than New York City, what we’re talking about are these incredibly dense networks of logging roads. One biologist told me that you go to some forests and it looks like the loggers must have driven to every single tree, because the roads are just so thick. And it’s actually very poignant to read the journals and memoirs of some of these early Forest Service rangers, as I did, because they talk about the pain of seeing these forests that they love just totally overrun with roads that they helped facilitate.

Klimek: Here’s the good news: Ben says there’s a lot of cause for optimism right now.

Goldfarb: Earlier we were talking about funding being one of the primary limitations for road decommissioning. And now, there’s just a lot more funding available, really thanks to these two giant pieces of legislation passed under the Biden administration, the Bipartisan Infrastructure Act and the Inflation Reduction Act. And both of those giant laws have different pots of money embedded within them that can be used for road decommissioning.

In the Infrastructure Act, there’s this thing called the Legacy Roads and Trails Program, which is, basically, $250 million for road restoration and rehabilitation. And then, in the IRA, the Inflation Reduction Act, there’s also all of this money that can be used by the Bureau of Land Management, which is the Forest Service’s sister agency, for road restoration. So there are just these big new pots of money coming online now and being distributed. And everybody I talked to for this story was just really excited about the prospects for road removal in the years ahead.

Klimek: That Smithsonian story you wrote was really focused on the removal of forest roads, rural roads, but what about the freeways and roads we were discussing earlier that remain heavily used? Are there ways of reducing the environmental harm that they cause?

Goldfarb: Yeah, it’s a great question. I think that one of the exciting things in that bipartisan Infrastructure Act that also has money for road removal, is that it also has $350 million for those new wildlife crossings that we were talking about. Which is easily the largest pot of money for animal passages ever put together. Historically, it’s been the Western states that have built a lot of these animal passages, but now states like Pennsylvania and South Dakota and Nebraska are getting interested.

I think that in the next five to ten years, thanks to this big federal grant program, we’re going to have lots more wildlife crossings popping up all over the country. And granted, that’s not going to solve the problem of roads in nature, obviously, but hopefully it’ll at least help to alleviate some of the really negative impacts.

Klimek: Smithsonian magazine contributor Ben Goldfarb is the author of Crossings: How Road Ecology Is Shaping the Future of Our Planet. This has been a really illuminating conversation, Ben. Thank you.

Goldfarb: Thank you so much, Chris. Yeah, I appreciate your time and interest.

Klimek: To read Goldfarb’s latest article in Smithsonian about safely decommissioning roads, and to learn more about how to report roadkill sightings to Shilling’s database at UC Davis, check out the links in our show notes.


Klimek: And speaking of Shilling, we couldn’t leave you without sharing one more story from him. We like to end all of our episodes with a “dinner party fact.” This is an anecdote or piece of information to stoke the conversation at your next social gathering. And for me, well, I can’t stop thinking about what Fraser told me about the culinary aspect of his roadkill research. Hold onto your dinners, folks.

Shilling: It falls a little bit into that shock jock kind of category of, “Oh, roadkill is so weird. What is that? What are you talking about?” But there’s a huge population of people that do collect and eat animals fresh off the road. I’ve done that. I’ve stopped on the side of I-5, 101, 395, and I have sliced out parts of deer from a fresh carcass and taken them home.

Klimek: Don’t knock it until you’ve tried it, I guess.

Shilling: Steak in a grocery store or chicken, how many days ago was that thing alive? But I would bet anything that the meat I’m cutting out from inside a deer that was killed a day ago has way less bacteria on it than that steak in a supermarket.

Klimek: After the New York Times published an article about his research in 2010, Fraser got an unexpected call.

Shilling: A chef in San Francisco called me up and said, “Hey, I do these unique meals for wealthy people, and we want to do a really just incredible dinner made from roadkill. Can I use your system to find out where to get something?” And I thought about it and I said, “Yeah, actually,” because our reporting’s real-time. So I said, “Well, how about this?” I knew he was in San Francisco, “I’m going to look at our system, as soon as something comes in that looks like it was probably fresh, especially if there’s a photograph, I’m going to forward the location to you, and you can just zip out there and go get it.”

And he did. He did exactly that, and did a meal of raccoon, which I was kind of surprised about. And rabbit, which makes more sense, based on that data collection. It was not at all legal, but definitely interesting.

Klimek: “There’s More to That” is not legal advice, but it is a production of Smithsonian magazine and PRX Productions. From the magazine, our team is me, Debra Rosenberg and Brian Wolly. From PRX, our team is Jessica Miller, Genevieve Sponsler, Adriana Rozas Rivera, Ry Dorsey and Edwin Ochoa. The executive producer of PRX Productions is Jocelyn Gonzales. Our episode artwork is by Emily Lankiewicz. Fact-checking by Stephanie Abramson. Our music is from APM Music.

I’m Chris Klimek. Thanks for listening.

Get the latest Science stories in your inbox.

Read the full story here.
Photos courtesy of

Don’t Think Too Hard About Gum

When you chew gum, you’re essentially gnawing on plastic.

At the turn of the 20th century, William Wrigley Jr. was bent on building an empire of gum, and as part of his extensive hustle, he managed to persuade the U.S. Department of War to include his products in soldiers’ rations. His argument—baseless at the time—was that chewing gum had miraculous abilities to quench thirst, stave off hunger, and dissipate nervous tension. But he was right: Scientists have since found that gum chewing can indeed increase concentration, reduce the impulse to snack, alleviate thirst, and improve oral health.Perhaps that’s why people around the world have had the impulse to gnaw on tacky materials—roots, resins, twigs, blubber, tar made by burning birch bark—for at least 8,000 years. Today, gum is again being marketed as a panacea for wellness. You can buy gum designed to deliver energy, nutrition, stress relief, or joint health; scientists are even developing gums that can protect against influenza, herpes, and COVID. Ironically, this new era of chewing gum is manufactured with a distinctly modern ingredient, one not usually associated with wellness: plastic.By the time Wrigley began his business venture, Americans had grown accustomed to chewing gum sold as candy-coated balls or packaged sticks. The base of these chewing gums was made from natural substances such as spruce resin and chicle, a natural latex that Aztecs and Mayans chewed for hundreds if not thousands of years. Unfortunately for 20th-century Americans, the chicozapote trees that exude chicle take a long time to grow, and if they are overtapped, they die. Plus, cultivated trees don’t produce nearly as much chicle as wild trees, says Jennifer Mathews, an anthropology professor at Trinity University and the author of Chicle. In the 1950s, chicle harvesters began struggling to meet demand. So gum companies turned to the newest innovations in materials science: synthetic rubbers and plastics.Today, most companies’ gum base is a proprietary blend of synthetic and natural ingredients: If a packet lists “gum base” as an ingredient, that gum most likely contains synthetic polymers. The FDA allows gum base to contain any of dozens of approved food-grade materials—substances deemed either safe for human consumption or safe to be in contact with food. Many, though, are not substances that people would otherwise think to put in their mouth. They include polyethylene (the most common type of plastic, used in plastic bags and milk jugs), polyvinyl acetate (a plastic also found in glue), and styrene-butadiene rubber (commonly used in car tires). The typical gum base contains two to four types of synthetic plastics or rubbers, Gwendolyn Graff, a confectionery consultant, told me.Everything we love about gum today is thanks to synthetic polymers, Graff said. Polyvinyl acetate, for example, strengthens the bubble film. “If you blow a bubble, and it starts to get holes in it and deflate, that’s usually an indicator that it doesn’t have polyvinyl acetate,” Graff said. Styrene-butadiene rubber creates a bouncy chewiness that makes gum more likely to stick to itself rather than to surfaces like your teeth. Polyethylene can be used to soften gum so it doesn’t tire out your jaw. Gums with only natural polymers “can feel like they're going to fall apart in your mouth,” Graff said.Plastic gum, though, also falls apart, in a way: Gum chewing has been linked to microplastic ingestion. In a study published in December, U.K. researchers had a volunteer chew on a piece of gum for an hour, spitting into test tubes as they went. After an hour of gum chewing, the saliva collected contained more than 250,000 pieces of micro and nano plastics—comparable to the level of microplastics found in a liter of bottled water. In a study presented at a recent meeting of the American Chemical Society (which has not yet been peer-reviewed), a graduate student’s saliva contained elevated microplastic levels after she chewed several commercially available gums, including natural ones. The research on gum chewing and microplastics is still limited—these two papers effectively represent analysis of just two people’s post-chew saliva—but gum chewing has also been correlated with higher urine levels of phthalates, plastic-softening chemicals that are known endocrine disruptors.Scientists are still learning about the health impacts of microplastic ingestion, too. Microplastics find their way into all kinds of foods from packaging or contamination during manufacturing, or because the plants and animals we eat absorb and ingest microplastics themselves. As a result, microplastics have been found in human livers, kidneys, brains, lungs, intestines, placentas, and breast milk, but exactly how our bodies absorb, disperse, and excrete ingested plastic is not very well studied, says Marcus Garcia, who researches the health effects of environmental contaminants at the University of New Mexico. Some research in mice and cultured cells hint that microplastics have the potential to cause damage, and epidemiological research suggests that microplastics are associated with respiratory, digestive, and reproductive issues, as well as colon and lung cancer. But scientists are still trying to understand whether or how microplastics cause disease, which microplastics are most dangerous to human health, and how much microplastic the body can take before seeing any negative effects.The answer could affect the future of what we choose to eat—or chew. Ingesting tiny plastic particles might seem inevitable, but over the past 10 years or so, Americans have grown understandably fearful about bits of plastic making their way into our food, fretting about microwaving food in plastic containers and drinking from plastic bottles. Gum has, for the most part, not triggered those worries, but in recent years, its popularity had been dropping for other reasons. In a bid to reverse that trend, gum companies are marketing synthetic gum as a tool for wellness. Just like Wrigley, they are betting that Americans will believe in the power of gum to soothe nerves and heal ailments, and that they won’t think too hard about what modern gum really is. For anyone worried about swallowing still more plastic, after all, gum is easy enough to avoid.

A marine biologist discovered something incredible in a beer bottle on the seafloor

This story was produced in collaboration with The Dodo. One morning this week, Hanna Koch was snorkeling in the Florida Keys when she came across a brown beer bottle on the sea floor. Koch, a marine biologist for Florida’s Monroe County, picked up the bottle, planning to carry it with her and later toss it […]

This story was produced in collaboration with The Dodo. One morning this week, Hanna Koch was snorkeling in the Florida Keys when she came across a brown beer bottle on the sea floor. Koch, a marine biologist for Florida’s Monroe County, picked up the bottle, planning to carry it with her and later toss it out.  Through her dive mask, Koch peered inside to make sure it was empty.  That’s when she saw an eyeball.  “There was something staring back at me,” Koch told me.  It wasn’t just one eyeball, actually — but dozens. Inside the bottle was an octopus mom with a brood of babies. “You could see their eyes, you could see their tentacles,” Koch said in a recent interview with Vox and The Dodo. “They were fully formed.” Instead of taking the bottle with her and throwing it away like she initially intended, Koch handed it to her colleague, another marine biologist, who carefully placed it back on the sandy sea floor. Based on the images and video, Chelsea Bennice, a marine biologist at Florida Atlantic University, said the animal was likely a species of pygmy octopus — making this whole encounter even cuter.  On one hand, it’s hopeful to find life — an octopus family! — living in rubbish. “One man’s trash is another octopuse’s nursery,” as University of Miami environmental scientist Jennifer Jacquet told me when I showed her the photos. Her graduate student, Janelle Kaz, said it’s actually not uncommon for octopuses to take up residence in beer bottles. “They are highly curious and opportunistic,” Jacquet said.  But it’s also a reminder that, as Florida ecosystems decline, there are fewer and fewer places for wildlife to live. Overfishing, pollution, and climate change have devastated near-shore habitats in the Keys — and especially coral reefs — in the last few decades.  The irony, Koch told me, is that she runs a state-funded project in Monroe County to create “artificial reefs:” structures, often made of concrete, to enhance the habitat for fish, lobsters, and other sea creatures. And she was actually snorkeling that morning to figure out where to put some of the structures.  “This octopus found artificial habitat to make its home,” Koch said. “I was just like, ‘Wait momma, because I’m going to put out some better habitat for you — something that someone can’t pick up and throw away.’”

Sea Lion Bites Surfer Amid One of the Worst Outbreaks of Domoic Acid Poisoning That California Wildlife Rescuers Can Remember

Sea lions, dolphins and birds are sick and dying because of a toxic algae bloom in Southern California—and animal care organizations are overwhelmed by the scale

Volunteers with the Channel Islands Marine & Wildlife Institute in Santa Barbara, California, rescue a sick sea lion that's likely suffering from domoic acid poisoning. David Swanson / AFP via Getty Images It started as a normal surf session for RJ LaMendola. He was roughly 150 yards from the beach in Southern California, riding the waves and enjoying the peaceful solitude. But the situation quickly turned violent when a sea lion emerged from the water and charged at LaMendola. The 20-year surfing veteran tried to remain calm as he frantically paddled back to shore, but the sea lion was behaving unusually—“like some deranged predator,” LaMendola wrote in a widely shared post on Facebook. The sea lion made contact, delivering a hard bite on LaMendola’s left buttock that pierced through his wetsuit. “Never have I had one charge me, especially at that ferocity, mouth open,” LaMendola tells the Ventura County Star’s Stacie N. Galang and Cheri Carlson. “It really was out of, like, a horror movie.” Eventually, LaMendola made it back to the sand and drove himself to a nearby emergency room. After being treated, he contacted local wildlife authorities. The most likely explanation for the sea lion’s abnormally aggressive behavior? The creature was probably suffering from domoic acid poisoning, which results from toxic algae blooms. Across Southern California, authorities are grappling with one of the worst outbreaks of domoic acid poisoning they’ve ever seen. Dozens of sea lions and dolphins have been affected by the condition in recent weeks, reports the Los Angeles Times’ Summer Lin. Birds are also turning up dead, according to the Los Angeles Daily News’ Erika I. Ritchie. At least 140 sick sea lions are being cared for at the Marine Mammal Care Center in San Pedro, per the Los Angeles Times, because they have a 50 to 65 percent chance of surviving if they receive treatment. Roughly another 45 are being cared for at the Pacific Marine Mammal Center in Laguna Beach, reports the Los Angeles Daily News. SeaWorld San Diego has rescued another 15 this year, reports KGTV’s Jane Kim. Other sea lions have been found dead on area beaches. “This morning, we had three calls within 30 minutes of daylight breaking,” Glenn Gray, CEO of the Pacific Marine Mammal Center, told the Los Angeles Daily News on March 18. “That’s the magnitude of it.” Members of the public are being urged to report any sick, distressed or dead animals they find on the beach. Beachgoers should also stay away from the animals and give them space. David Swanson / AFP via Getty Images Dozens of dolphins, meanwhile, are washing up dead or close to death on beaches. Veterinarians are euthanizing the dolphins, because they rarely survive domoic acid poisoning, per the Los Angeles Times. “It’s the only humane option,” says John Warner, CEO of the Marine Mammal Care Center, to the Westside Current’s Jamie Paige. “It’s an awful situation.” A similar outbreak occurred in 2023, killing more than 1,000 sea lions. But officials say this year is shaping up to be worse. The harmful algae bloom started roughly five weeks ago. During a bloom, environmental conditions cause microscopic phytoplankton to proliferate. Some species of phytoplankton produce domoic acid, which then accumulates in filter-feeding fish and shellfish. Marine mammals become sickened when they eat the affected fish and shellfish. (Humans can also get sick from eating contaminated fish, shellfish and crustaceans.) In marine mammals, symptoms of domoic acid poisoning include seizures, lethargy, foaming at the mouth and a neck-craning behavior known as “stargazing.” Biting incidents—like the one LaMendola endured—are rare, but sickened animals have been known to behave aggressively. “The neurotoxin is crippling and killing sea lions and dolphins,” says Ruth Dover, managing director of the nonprofit Channel Islands Marine & Wildlife Institute, to the Ventura County Star. The bloom likely started when cold water from deep in the Pacific Ocean rose to the surface in February. Now, it also appears to be spreading closer to the shore. Researchers are monitoring the bloom, but so far, they have no indication of how long it will last. Authorities say toxic algae blooms are getting worse and happening more frequently because of climate change, agricultural runoff and other human-caused factors. This is the fourth straight year a domoic acid-producing bloom has developed off Southern California, as Dave Bader, chief operating officer of the Marine Mammal Care Center, tells KNX News’ Karen Adams. “We don’t know what the long-term impacts will be for having so many consecutive years of this toxic bloom,” Bader adds. “But [dolphins are] a sentinel species. They’re telling us about the health of the ocean, and when we see marine life dying, and we’re seeing it in increasing levels with more frequency, the ocean’s telling us something’s off.” The ongoing outbreak is taking its toll on Southern California veterinarians, volunteers and beachgoers. The incidents are particularly heartbreaking for lifeguards, who typically comfort dying dolphins—and keep beachgoers away—until authorities can arrive. Members of the public are encouraged to report any distressed, sick or dead animals they find on the beach. And, more importantly, they should leave the animals alone. Authorities say pushing a sick creature back into the ocean will likely cause it to drown. Dolphins also become especially agitated when they’re out of the water and people are around—to the point that they can die from fear. “People need to leave them alone and not crowd around them,” Warner tells the Los Angeles Times. “Selfies kill animals, so use your zoom, and stay away.” Get the latest stories in your inbox every weekday.

Deep Sea Mining Impacts Still Felt Forty Years On, Study Shows

By David StanwaySINGAPORE (Reuters) - A strip of the Pacific Ocean seabed that was mined for metals more than 40 years ago has still not recovered,...

SINGAPORE (Reuters) - A strip of the Pacific Ocean seabed that was mined for metals more than 40 years ago has still not recovered, scientists said late on Wednesday, adding weight to calls for a moratorium on all deep sea mining activity during U.N.-led talks this week.A 2023 expedition to the mineral-rich Clarion Clipperton Zone by a team of scientists led by Britain's National Oceanography Centre found that the impacts of a 1979 test mining experiment were still being felt on the seafloor, a complex ecosystem hosting hundreds of species.The collection of small "polymetallic nodules" from an eight-metre strip of the seabed caused long-term sediment changes and reduced the populations of many of the larger organisms living there, though some smaller, more mobile creatures have recovered, according to the study, published in Nature journal."The evidence provided by this study is critical for understanding potential long-term impacts," said NOC expedition leader Daniel Jones. "Although we saw some areas with little or no recovery, some animal groups were showing the first signs of recolonisation and repopulation."Delegations from 36 countries are attending a council meeting of the U.N.'s International Seabed Authority in Kingston, Jamaica this week to decide whether mining companies should be allowed to extract metals like copper or cobalt from the ocean floor.As they deliberate over hundreds of proposed amendments to a 256-page draft mining code, environmental groups have called for mining activities to be halted, a move supported by 32 governments and 63 large companies and financial institutions."This latest evidence makes it even more clear why governments must act now to stop deep sea mining before it ever starts," said Greenpeace campaigner Louise Casson.While few expect a final text to be completed by the time the latest round of talks ends on March 28, Canada's The Metals Company plans to submit the first formal mining application in June.On Friday, delegates will discuss what actions should be taken if an application to mine is submitted before the regulations have been completed.TMC said at a briefing last week that it had a legal right to submit an application at any time and hoped that the ISA would bring clarity to the application process.TMC says the environmental impact of deep sea mining is significantly smaller than conventional terrestrial mining."You just have to move a lot less material to get the same amount of metal - higher grade means better economics, but also means lower environmental impacts," said Craig Shesky, TMC's chief financial officer.(Reporting by David Stanway; Editing by Saad Sayeed)Copyright 2025 Thomson Reuters.

In the hills of Italy, wolves returned from the brink. Then the poisonings began

Strict laws saved the country’s wolves from extinction. Now conservationists believe their relaxation could embolden vigilantesHigh on a mountain pass near the town of Cocullo in central Italy lay six black sacks. Inside were nine wolves, including a pregnant female and seven youngsters – an entire pack. They had eaten slabs of poisoned veal left out a few days earlier, dying over the hours that followed, snarls of pain fixed on their faces.Three griffon vultures and two ravens were also killed, probably alongside more animals that went into hiding, dying out of sight. Poison creates a succession of death, spreading through entire food chains and contaminating land and water for years. Continue reading...

High on a mountain pass near the town of Cocullo in central Italy lay six black sacks. Inside were nine wolves, including a pregnant female and seven youngsters – an entire pack. They had eaten slabs of poisoned veal left out a few days earlier, dying over the hours that followed, snarls of pain fixed on their faces.Three griffon vultures and two ravens were also killed, probably alongside more animals that went into hiding, dying out of sight. Poison creates a succession of death, spreading through entire food chains and contaminating land and water for years.The incident in 2023, was described as “culturally medieval” by national park authorities. “It was a bad day for the whole team,” says Nicolò Borgianni, a vulture field officer with Rewilding Apennines, who still remembers what a beautiful May day it was when the animals perished: alpine flowers poking through the grass and snow still dusting mountain peaks on the horizon from the 1,300-metre viewpoint. “But there are many cases like this one.”The bags containing nine wolves poisoned in Cocullo. No one was prosecuted for the deaths. Photograph: HandoutLike all poisoning events in this area, no one was prosecuted. The corpses were disposed of and life moved on. Now the ground is grubbed up from wild boars digging their snouts in the dirt looking for bulbs to eat.Downgrading wolf protection is a misguided decision. It offers no real help to rural communitiesIn the 1970s, wolves were on the brink of extinction in Italy, but thanks to strict protections and conservation efforts, there are now more than 3,000 of them. In many areas of Europe, farmers are having to learn to live alongside wolves again as they return to places they have been absent from for hundreds of years – and many are concerned that they prey on livestock. The story unfolding in this small valley in Italy is being repeated all over Europe. “Farmers feel abandoned by government, so they solve their problems on their own,” says Borgianni.From March 2025, the EU is relaxing its protections from “strictly protected” to “protected”, which means if wolves are perceived as a threat to rural communities, states can organise culls. Poisonings such as the one in Cocullo will remain illegal, but conservationists fear the relaxation of protections will empower vigilantes.Angela Tavone, a communications manager from Rewilding Apennines, is worried this will create more “chains of death” like the one two years ago. “Groups of farmers can feel more free to act against wolves because of the change in the EU law,” she says.Angela Tavone and Nicolò Borgianni inspect a horse skull. Photograph: Luigi Filice/The GuardianWhoever killed the wolf pack in 2023 failed to keep wolves away. Months later, another pack moved in. Nearly two years later, on that same spot, there are half a dozen wolf droppings, some just a few weeks old. The pack’s territory overlaps with mountain pastures used for cattle and sheep in spring and summer. Wild boar makes up most of the wolves’ diet here, but you can also spot hairs from cows or horses in the droppings. Borgianni estimates about 10% of their diet is livestock. One pack monitored by scientists in the region appeared to be eating closer to 70% during winter.Vultures are often the sentinels of a poisoning event. The Apennines has the highest number of GPS-tagged vultures in a single population, so observers know something is wrong if their tags stop moving. “If you investigate, you find these incidents,” says Borgianni. They are social animals and up to 60 birds can feed on a single carcass, so dozens can be wiped out quickly. Since 2021 the Rewilding Apennines team has picked up 85 carcasses across all species.An Apennine wolf pup carrying part of a red deer in Abruzzo, Italy. One poisoning event can kill a whole pack. Photograph: Nature Picture Library/AlamyPredator poisoning is an issue across Europe – and the world – but we know little about the extent of it, because animals generally die out of sight. Farmers say these apex predators threaten their livelihoods – and resolving the conflicts is complex.Down in the valley, Cristian Guido’s family farm and restaurant Il Castellaccio back on to fresh mountain pastures. Twenty years ago, when he started farming, there were not many wolves around. Two nights ago, CCTV cameras captured a pair of wolves wandering through the yard. Guido can sometimes hear them howling from the woods by the farm.Cristian Guido at his family farm and restaurant. Photograph: Luigi Filice/The GuardianFrom May, his 90 sheep go up into the hills every day to fatten on the succulent grasses, and come down in the evenings. One day last October, 18 of them didn’t come back. Guido believes wolves were to blame, perhaps chasing the sheep off a cliff.I find wolves beautiful, but I keep asking for help. It is just not possible to keep them awayThere was no evidence they had been killed by a wolf (there often is not) so he got no compensation. Now, when he takes his animals up in the morning, he doesn’t know if they will all come back. “I fear that will happen again,” he says.He is not alone. “Other farms suffered the same loss,” he says. In the past few years, half a dozen dead wolves have been hung up by roads and bus stops by people protesting at their return.“I find wolves beautiful, but I keep asking for help. It is just not possible to keep them away. And I’m aware if you shoot them, you will get more and more damage,” he says. Guido believes protections for wolves should not have been downgraded, but that farmers must be given more support.The bones of a horse in ⁨Cocullo⁩, ⁨Abruzzo. Photograph: Luigi Filice/The GuardianThis would include making compensation easier to claim and quicker to be distributed. There should be more support for farmers constructing wolf-proof fences near their properties, he believes.Research this year looking at wolf-farmer conflicts in northern Greece found wolves were often scapegoats for deep-rooted issues, such as financial challenges, poor government policies on protection of livelihoods, a changing climate, lack of services and rural depopulation. “Our findings emphasise that while wolves impact farmers, economic and policy-related factors play a greater role,” the researchers concluded. The study found fair compensation schemes were essential for coexistence.These findings are echoed by a coalition of NGOs, including BirdLife Europe, ClientEarth and the European Environmental Bureau, which say that instead of providing support for farmers living alongside wolves, the EU has allowed them to be culled. “Downgrading wolf protection is a misguided decision that prioritises political gains over science and will further polarise the debate,” say the NGOs. “It offers no real help to rural communities.”Virginia Sciore is a farmer with 150 goats grazing on pastures in the Morrone mountains. Since 2018 she has lost five goats. “You can see in the eyes of the goats they are terrified – something happened in the mountain,” she says. Sometimes, she finds a collar or tuft of hair, but usually they disappear without a trace, so she doesn’t claim compensation. “I don’t know if it was a wolf,” she says.“The majority of farmers don’t believe in coexistence,” Sciore says. “They have stories about wolves that have been imported. They want to believe these things. People are angry and it’s projected on to the wolf.”Virginia Sciore has lost five of her 150 goats since 2018. Photograph: Angela Tavone/Rewilding ApenninesThe conflict over wolves comes amid a wider shift away from environmental protections across Europe. Last year, EU leaders scaled back plans to cut pollution and protect habitats after angry protests from farmers, as a law to restore nature was turned into a political punching bag. “It’s a low moment historically to face this issue,” says Tavone.The Cucollo incident was a turning point for the Rewilding Apennines team. In response, they created their first anti-poison dog unit. A malinois dog called Wild – who at six months old is still in training – will, in the coming months, sniff out potential poisoning incidents.As spring approaches, so too does the most dangerous time for poisoning events, as farmers look to protect young and vulnerable livestock. Catching poisoning incidents quickly is key – and Wild will help with that. Those fighting to protect wildlife are increasing their efforts. “The war is still going on,” says Tavone.The mountains around Cocullo⁩. As spring approaches, poisoning events usually spike as farmers try to protect young animals. Photograph: Luigi Filice/The Guardian

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.