Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

The “Internet of Animals” Could Transform What We Know About Wildlife

News Feed
Saturday, August 10, 2024

This story was originally published by Yale Environment 360 and is reproduced here as part of the Climate Desk collaboration. Field biologists tend to be a patient lot, often resigned to long days and weeks in the field and committed to experiments that take years to yield results. But even among that dogged crowd, Martin Wikelski stands out. Back in 2001, sitting on a porch one evening in Panama, the German ornithologist had the germ of an idea for an “internet of animals,” a global system of sensor-wearing wildlife that would reveal the planet’s elusive, nonhuman worlds. He figured he could get it up and running by 2005. Nearly 20 years later, Wikelski may have finally succeeded—after surmounting roadblocks that range from bureaucratic mishaps to technical glitches to a geopolitical crisis. His space-based system, known as ICARUS (International Cooperation for Animal Research Using Space), is now scheduled to launch, in its latest, satellite-based incarnation, on a private rocket sometime in 2025. The underlying idea of the internet of animals is to tune into the planet’s hidden phenomena—the flight paths followed by sharp-shinned hawks, the precise fates befalling Arctic terns that die young, the exact landscape requirements of critically endangered saiga antelope—by attaching tiny, solar-powered tracking devices, some weighing less than a paperclip, to all kinds of organisms and even some inanimate objects (glaciers, ocean plastic debris). The inexpensive, globe-spanning system of animal tagging is meant to help scientists understand the precise drivers of global change, and much more, by tracking thousands of tagged animals from space and tying their experiences to the broader impacts facing whole populations or even species. Wikelski, the director of the Department of Migration at the Max Planck Institute of Animal Behavior, in Germany, said the prospect of having that data, and of “making people aware of the incredible beauty and richness of what’s happening out there,” has made the effort worthwhile, even urgent. It’s also true, as he wrote in his recent book The Internet of Animals: Discovering the Collective Intelligence of Life on Earth, that he “had no clue how many pitfalls there would be…how many times when we desperately wanted to give up, because the whole process had become so exquisitely frustrating that we just couldn’t stand it anymore.” In 2018, after years of working with designers, engineers, and government officials from multiple countries and continents, Wikelski’s team saw its ICARUS receiver launch aboard a Soyuz rocket from Kazakhstan to the International Space Station, where Russian cosmonauts attached it to their side of the orbiting lab. “We danced, cried, and hugged one another,” Wikelski wrote of the launch. “All the stress of nearly 20 years fell away.” The internet of animals went live in March 2020, but before the year was out, mechanical issues on the Russian ISS module took the system down. Nearly a year passed before it was up and running again. By the spring of 2021, the system was finally humming along, receiving data from roughly 3,500 tagged animals around the world. But then, in the winter of 2022, Russia invaded Ukraine, and the West cut ties with Russia. ICARUS’s transmission of data abruptly halted. Our nonhuman neighbors “can take a pulse of the planet and be detectors of change and help us understand the health of the environment.” After the ISS failure, Wikelski’s team set out to redesign the system to use satellite-based receivers, which had always been its long-term aim. In 2022, plans seemed almost set for an ICARUS receiver to orbit on the next GRACE (Gravity Recovery and Climate Experiment) satellite, a joint venture between NASA and the German space agency, scheduled to launch in 2028. But last-minute political haggling siphoned more than a third of the project’s German funding, leaving no money to include ICARUS. “We were totally devastated,” Wikelski recalled. He gave his project three months to find a solution or finally give up. “That’s when we scaled down and said, we need a CubeSat.” And so beginning sometime next year, the project plans to launch ICARUS receivers on five relatively low-cost CubeSats—miniature satellites roughly the size of a Rubik’s cube and weighing only a couple of pounds—using private launch companies. Funded by the Max Planck Society, the system will cost roughly $1.6 million to launch and have annual operating expenses of around $160,000. “The geopolitical aspect of this is pretty huge,” said Michael Wunder, a quantitative ecologist at the University of Colorado Denver who used the ISS tags to study the migration patterns of mountain plovers before the war in Ukraine cut off the research. Instead of involving government space agencies, the project’s new iteration keeps the scientists in control. The new system allows for greater global coverage—the ISS receiver couldn’t communicate with tags at the planet’s highest latitudes—and Wikelski’s team has used the intervening years to shrink the tags by several grams and design new ways for animals to “wear” them, vastly expanding the number of species scientists can study. The team is currently upgrading 4,000 older tags to work with the new system. The tags provide hourly accounts of the animal’s energy expenditure; measure environmental factors like air pressure, altitude, temperature, and humidity; and even use AI to help interpret the animal’s behavior. The trove of data “will open a lot of doors for researchers,” said Ashley Lohr, who coordinates North American projects for ICARUS through the North Carolina Museum of Natural Sciences. “How stressed was the animal? What were the environmental conditions when the animal was at this place at this time?” Wunder’s lab group tagged 17 mountain plovers in Colorado in 2021. Native to the plains of the north-central United Staes, the species has declined by 80 percent in the past six decades. But the birds are hard to study because of their habitat and behavior. “They’re singing and vociferous but not in your face,” Wunder said, and in breeding season they like their space, living in densities of only about three birds per square kilometer. The plovers often occupy private ranchlands, which makes them hard to find without trespassing. And they breed in late March and April, while bird surveys, timed to count migratory songbirds, happen in May. Wunder has long sought to understand whether mountain plovers follow distinct, structured migration patterns or whether birds from different areas mix together in winter flocks. He also wants to learn what drives the birds to migrate. “Are they moving away from something or toward something else?” he asks. He also hopes to determine exactly where the birds are running into trouble. Before the ISS receiver went dark in 2022, the ICARUS tags revealed that the plovers didn’t follow fixed migration routes and that birds from around the country were mingling in the winter. When several transmitting birds died, Wunder was able to dispatch researchers to their locations and discover the cause of death—predation. The birds started returning to Colorado in February, and Wunder was eager to see which ones would come back—but then the war in Ukraine began. “We were cut off, there was no more information,” he said. Biologist Martin Wikelski tags a scarlet macaw with an ICARUS transmitter. Courtesy of Martin WikelskiCourtesy of Martin Wikelski Ellen Aikens, a biologist at the University of Wyoming who did her postdoctoral research on animal migration at the Max Planck Institute, believes that ICARUS could serve as a “democratizing force” in ecology and biology. It’s a way to level the playing field, she says, so that “folks that have a smaller budget or are working on species that are a bit more obscure and there’s not as much funding behind can start to get the same kind of information, baseline info, about where those [animals] are going.” In her lab, Aikens is studying golden eagles using a tag made by the German company e-obs. “It’s the gold standard of biologging in bird research, if you can afford it and your bird is big enough to carry the transformer”—like geese, storks, and eagles. A single e-obs tag costs more than $1,500 and works over a cellular network, meaning researchers must also pay the cost of data transmission for as long as the animal lives. “If you want to get a good sample size that will allow you to publish your research, that adds up really quickly,” Aikens said. “ICARUS tags are cheaper by an order of magnitude.” Aikens believes that ICARUS will help transform the way scientists study animals. Our nonhuman neighbors “can take a pulse of the planet and be detectors of change and help us understand the health of the environment,” she said. “As [animals] move these vast distances, they can collect detailed environmental information that can better inform climate models and collect information in places that are difficult to monitor,” whether high in the sky, deep in the ocean, or under a thick layer of ice. ICARUS tags are solar-powered, whereas some existing tagging systems run on batteries, which can die—ending the research on that individual or requiring recapture to change them out. Other tagging systems rely on animals passing by a signal tower. It works for certain animals, like birds and bats, but not for others. “Because ICARUS is satellite-powered, you don’t have to wait for your animal to go back on the grid and pass by a tower,” said Lohr. Instead, each time a satellite passes over an area, data from nearby tagged animals will be uploaded to Movebank, an open-access database. A year of animal movements as tracked by ICARUS and other research groups around the world. Data compiled by Movebank. Ultimately, researchers hope that ICARUS data can “help us pinpoint effective conservation strategies,” Aikens said. “It can help us identify pinch points on the landscape.” While this is already happening for some species, including North American ungulates like elk and pronghorn antelope, whose migrations researchers have tracked for years, for most of the planet’s species “we lack this data and this wide coverage of information, which makes these fine-scale interventions a lot harder to achieve. That’s a place that ICARUS can help fill in a lot of gaps.” And if the internet of animals can zero in on specific issues—for instance, a bird species dying out because a particular insect it eats is being killed by a particular chemical being sprayed in an area—Wikelski believes such information could drive people to act. “People are willing to do something about it if they know that what they do is really helpful,” he said. For now, Wikelski continues to practice patience. When I spoke to him in early July, he was dealing with the latest hurdle: satellite launch delays, including one caused by a payload issue and another caused by an ill-timed summer holiday that delayed authorization of the $30,000 payment needed to secure a launch reservation. “Our project is now too small to really be on everybody’s horizon,” he said. “Before, it was too large.” Nevertheless, Wikelski was hopeful. His team was studying and perfecting the lowest-stress methods of tagging animals and even testing automatic tagging systems, like one for deer involving a salt lick and a tiny elastic band. He remained confident of ICARUS’s potential. “One really important aspect we think is transformative in biology is the scaling up of tagging,” he said. “So you don’t have one animal but 50 or 100, or you do it across a continent.” Over the next two years he plans to tag 9,000 animals in Europe, including blackbirds, storm thrushes, swifts, and sparrows in a study already underway. Roughly 7,000 of those 9,000 would die in the first year, he said, based on general patterns. “That means we are finally understanding where they disappear. Where are the death traps? These tags are so smart, they can tell us if a female is nesting and if the clutch disappears. So we can not only get information on where the adults are living and dying, but have the adults been successful in hatching or clutching? Is there a massive problem in a certain area? Then we can link individuals to populations and understand the drivers of change.”

This story was originally published by Yale Environment 360 and is reproduced here as part of the Climate Desk collaboration. Field biologists tend to be a patient lot, often resigned to long days and weeks in the field and committed to experiments that take years to yield results. But even among that dogged crowd, Martin Wikelski stands out. Back in […]

This story was originally published by Yale Environment 360 and is reproduced here as part of the Climate Desk collaboration.

Field biologists tend to be a patient lot, often resigned to long days and weeks in the field and committed to experiments that take years to yield results. But even among that dogged crowd, Martin Wikelski stands out.

Back in 2001, sitting on a porch one evening in Panama, the German ornithologist had the germ of an idea for an “internet of animals,” a global system of sensor-wearing wildlife that would reveal the planet’s elusive, nonhuman worlds. He figured he could get it up and running by 2005. Nearly 20 years later, Wikelski may have finally succeeded—after surmounting roadblocks that range from bureaucratic mishaps to technical glitches to a geopolitical crisis. His space-based system, known as ICARUS (International Cooperation for Animal Research Using Space), is now scheduled to launch, in its latest, satellite-based incarnation, on a private rocket sometime in 2025.

The underlying idea of the internet of animals is to tune into the planet’s hidden phenomena—the flight paths followed by sharp-shinned hawks, the precise fates befalling Arctic terns that die young, the exact landscape requirements of critically endangered saiga antelope—by attaching tiny, solar-powered tracking devices, some weighing less than a paperclip, to all kinds of organisms and even some inanimate objects (glaciers, ocean plastic debris). The inexpensive, globe-spanning system of animal tagging is meant to help scientists understand the precise drivers of global change, and much more, by tracking thousands of tagged animals from space and tying their experiences to the broader impacts facing whole populations or even species.

Wikelski, the director of the Department of Migration at the Max Planck Institute of Animal Behavior, in Germany, said the prospect of having that data, and of “making people aware of the incredible beauty and richness of what’s happening out there,” has made the effort worthwhile, even urgent.

It’s also true, as he wrote in his recent book The Internet of Animals: Discovering the Collective Intelligence of Life on Earth, that he “had no clue how many pitfalls there would be…how many times when we desperately wanted to give up, because the whole process had become so exquisitely frustrating that we just couldn’t stand it anymore.”

In 2018, after years of working with designers, engineers, and government officials from multiple countries and continents, Wikelski’s team saw its ICARUS receiver launch aboard a Soyuz rocket from Kazakhstan to the International Space Station, where Russian cosmonauts attached it to their side of the orbiting lab. “We danced, cried, and hugged one another,” Wikelski wrote of the launch. “All the stress of nearly 20 years fell away.”

The internet of animals went live in March 2020, but before the year was out, mechanical issues on the Russian ISS module took the system down. Nearly a year passed before it was up and running again. By the spring of 2021, the system was finally humming along, receiving data from roughly 3,500 tagged animals around the world. But then, in the winter of 2022, Russia invaded Ukraine, and the West cut ties with Russia. ICARUS’s transmission of data abruptly halted.

Our nonhuman neighbors “can take a pulse of the planet and be detectors of change and help us understand the health of the environment.”

After the ISS failure, Wikelski’s team set out to redesign the system to use satellite-based receivers, which had always been its long-term aim. In 2022, plans seemed almost set for an ICARUS receiver to orbit on the next GRACE (Gravity Recovery and Climate Experiment) satellite, a joint venture between NASA and the German space agency, scheduled to launch in 2028. But last-minute political haggling siphoned more than a third of the project’s German funding, leaving no money to include ICARUS. “We were totally devastated,” Wikelski recalled. He gave his project three months to find a solution or finally give up. “That’s when we scaled down and said, we need a CubeSat.”

And so beginning sometime next year, the project plans to launch ICARUS receivers on five relatively low-cost CubeSats—miniature satellites roughly the size of a Rubik’s cube and weighing only a couple of pounds—using private launch companies. Funded by the Max Planck Society, the system will cost roughly $1.6 million to launch and have annual operating expenses of around $160,000.

“The geopolitical aspect of this is pretty huge,” said Michael Wunder, a quantitative ecologist at the University of Colorado Denver who used the ISS tags to study the migration patterns of mountain plovers before the war in Ukraine cut off the research. Instead of involving government space agencies, the project’s new iteration keeps the scientists in control.

The new system allows for greater global coverage—the ISS receiver couldn’t communicate with tags at the planet’s highest latitudes—and Wikelski’s team has used the intervening years to shrink the tags by several grams and design new ways for animals to “wear” them, vastly expanding the number of species scientists can study. The team is currently upgrading 4,000 older tags to work with the new system. The tags provide hourly accounts of the animal’s energy expenditure; measure environmental factors like air pressure, altitude, temperature, and humidity; and even use AI to help interpret the animal’s behavior.

The trove of data “will open a lot of doors for researchers,” said Ashley Lohr, who coordinates North American projects for ICARUS through the North Carolina Museum of Natural Sciences. “How stressed was the animal? What were the environmental conditions when the animal was at this place at this time?”

Wunder’s lab group tagged 17 mountain plovers in Colorado in 2021. Native to the plains of the north-central United Staes, the species has declined by 80 percent in the past six decades. But the birds are hard to study because of their habitat and behavior. “They’re singing and vociferous but not in your face,” Wunder said, and in breeding season they like their space, living in densities of only about three birds per square kilometer. The plovers often occupy private ranchlands, which makes them hard to find without trespassing. And they breed in late March and April, while bird surveys, timed to count migratory songbirds, happen in May.

Wunder has long sought to understand whether mountain plovers follow distinct, structured migration patterns or whether birds from different areas mix together in winter flocks. He also wants to learn what drives the birds to migrate. “Are they moving away from something or toward something else?” he asks. He also hopes to determine exactly where the birds are running into trouble.

Before the ISS receiver went dark in 2022, the ICARUS tags revealed that the plovers didn’t follow fixed migration routes and that birds from around the country were mingling in the winter. When several transmitting birds died, Wunder was able to dispatch researchers to their locations and discover the cause of death—predation. The birds started returning to Colorado in February, and Wunder was eager to see which ones would come back—but then the war in Ukraine began. “We were cut off, there was no more information,” he said.

Biologist Martin Wikelski tags a scarlet macaw with an ICARUS transmitter. Courtesy of Martin WikelskiCourtesy of Martin Wikelski

Ellen Aikens, a biologist at the University of Wyoming who did her postdoctoral research on animal migration at the Max Planck Institute, believes that ICARUS could serve as a “democratizing force” in ecology and biology. It’s a way to level the playing field, she says, so that “folks that have a smaller budget or are working on species that are a bit more obscure and there’s not as much funding behind can start to get the same kind of information, baseline info, about where those [animals] are going.”

In her lab, Aikens is studying golden eagles using a tag made by the German company e-obs. “It’s the gold standard of biologging in bird research, if you can afford it and your bird is big enough to carry the transformer”—like geese, storks, and eagles. A single e-obs tag costs more than $1,500 and works over a cellular network, meaning researchers must also pay the cost of data transmission for as long as the animal lives. “If you want to get a good sample size that will allow you to publish your research, that adds up really quickly,” Aikens said. “ICARUS tags are cheaper by an order of magnitude.”

Aikens believes that ICARUS will help transform the way scientists study animals. Our nonhuman neighbors “can take a pulse of the planet and be detectors of change and help us understand the health of the environment,” she said. “As [animals] move these vast distances, they can collect detailed environmental information that can better inform climate models and collect information in places that are difficult to monitor,” whether high in the sky, deep in the ocean, or under a thick layer of ice.

ICARUS tags are solar-powered, whereas some existing tagging systems run on batteries, which can die—ending the research on that individual or requiring recapture to change them out. Other tagging systems rely on animals passing by a signal tower. It works for certain animals, like birds and bats, but not for others. “Because ICARUS is satellite-powered, you don’t have to wait for your animal to go back on the grid and pass by a tower,” said Lohr. Instead, each time a satellite passes over an area, data from nearby tagged animals will be uploaded to Movebank, an open-access database.

A year of animal movements as tracked by ICARUS and other research groups around the world. Data compiled by Movebank.

Ultimately, researchers hope that ICARUS data can “help us pinpoint effective conservation strategies,” Aikens said. “It can help us identify pinch points on the landscape.” While this is already happening for some species, including North American ungulates like elk and pronghorn antelope, whose migrations researchers have tracked for years, for most of the planet’s species “we lack this data and this wide coverage of information, which makes these fine-scale interventions a lot harder to achieve. That’s a place that ICARUS can help fill in a lot of gaps.”

And if the internet of animals can zero in on specific issues—for instance, a bird species dying out because a particular insect it eats is being killed by a particular chemical being sprayed in an area—Wikelski believes such information could drive people to act. “People are willing to do something about it if they know that what they do is really helpful,” he said.

For now, Wikelski continues to practice patience. When I spoke to him in early July, he was dealing with the latest hurdle: satellite launch delays, including one caused by a payload issue and another caused by an ill-timed summer holiday that delayed authorization of the $30,000 payment needed to secure a launch reservation. “Our project is now too small to really be on everybody’s horizon,” he said. “Before, it was too large.”

Nevertheless, Wikelski was hopeful. His team was studying and perfecting the lowest-stress methods of tagging animals and even testing automatic tagging systems, like one for deer involving a salt lick and a tiny elastic band. He remained confident of ICARUS’s potential.

“One really important aspect we think is transformative in biology is the scaling up of tagging,” he said. “So you don’t have one animal but 50 or 100, or you do it across a continent.”

Over the next two years he plans to tag 9,000 animals in Europe, including blackbirds, storm thrushes, swifts, and sparrows in a study already underway. Roughly 7,000 of those 9,000 would die in the first year, he said, based on general patterns. “That means we are finally understanding where they disappear. Where are the death traps? These tags are so smart, they can tell us if a female is nesting and if the clutch disappears. So we can not only get information on where the adults are living and dying, but have the adults been successful in hatching or clutching? Is there a massive problem in a certain area? Then we can link individuals to populations and understand the drivers of change.”

Read the full story here.
Photos courtesy of

How the new wildlife crossing over I-5 will help delicate Oregon ecosystem

The new crossing will be in southern Oregon in the Siskiyous, where the freeway bisects the home of an impressive list of flora and fauna

The terrain south of Ashland and stretching to the California border sits at an incredible intersection of ecological systems.Here, the ancient Siskiyou Mountains meet the volcanic Cascades, the high desert of the Great Basin, the Klamath Mountains and the oak woodlands of Northern California.Dubbed an “ecological wonderland” and home to an impressive list of flora and fauna, the area was designated as the Cascade-Siskiyou National Monument in 2000.Plowing through all that biodiversity is Interstate 5, which carries 17,000 vehicles per day. The four-lane interstate essentially severs the monument into two.Animals don’t have an easy time getting from one side of the road to the other. Due to its location, however, the area is a hotbed of wildlife activity and considered a “red zone” for vehicle collisions.“The traffic volume on most portions of I-5 would be considered to be a permanent barrier to wildlife movement,” Tim Greseth, executive director of the Oregon Wildlife Foundation, tells Columbia Insight. “The oddity with this particular location is it’s smack dab in the middle of the Cascade-Siskiyou National Monument, which was established primarily because of the biodiversity of the region.”Now there’s good news, for wildlife and motorists alike.Artist's rendering of Oregon's first overcrossing for wildlife, proposed for just north of the California border.ODOTThe area will soon get a lot safer thanks to a $33 million federal grant to the Oregon Department of Transportation to construct a massive wildlife crossing over I-5 just north of the Oregon-California border.“The grant award will allow ODOT to construct a wildlife crossing over Interstate 5 in southern Oregon in the Cascade-Siskiyou National Monument,” according to the ODOT website. “This will be the first wildlife overcrossing for Oregon and for the entire stretch of I-5 between Mexico and Canada.”Announced in December, the grant award for the Southern Oregon Wildlife Overcrossing is the result of years of work and collaboration spearheaded by the Southern Oregon Wildlife Crossing Coalition, which formed in 2021 to push for animal crossings in the monument.ODOT will provide another $3.8 million in matching funds that will come from a pot of money created by the 2021 Oregon Legislature to support wildlife crossings across the state.Construction is expected to begin in 2028, according to ODOT.Overcross vs. undercrossEach year in Oregon, officials document about 6,000 vehicle collisions with deer and elk.Wildlife crossings are effective at reducing such collisions.Oregon’s six existing wildlife undercrossings—tunnels constructed beneath roads—have resulted in an 80-90% decrease in vehicle-wildlife collisions in impacted areas, according to ODOT and the Oregon Department of Fish and Wildlife.“There’s a real advantage to doing overcrossings versus undercrossings,” says Greseth. “Overcrossings get a lot more diversity of species use. If you think about an underpass—and think about even people and how we might approach something where we’re going underneath a busy road—each of us individually would probably approach that with some trepidation. Animals aren’t going to be different.”The proposed I-5 overcross will consist of soil, vegetation and landscaping elements to make the crossing feel safer to wildlife. It will include retaining walls and sound walls along its length to dampen interstate noise and shield wildlife from light on the road.Dense plantings of vegetation will offer cover from predators for smaller animals, while open paths along the crossing will give animals using the bridge the ability to see their destination, according to ODOT spokesperson Julie Denney.ODOT’s landscape architect and a multidisciplinary subgroup are planning which plants to use on the bridge. The team is “focusing on the plants that will help make the crossing the most attractive for the species we expect to utilize the crossing,” says Denney. Those species include deer, elk, bear, cougar, birds and even insects.Potential plants for the crossing include sugar pine, desert gooseberry, deer brush, Oregon white oak, dwarf Oregon white oak, rubber rabbitbrush, antelope bitterbrush and spreading dogbane.The structure will span northbound and southbound lanes, and have fencing stretching two-and-a-half miles in each direction and on either side of the interstate. The fencing will help funnel wildlife onto the bridge.“Our goal is to provide an environment for the crossing to be as natural as possible, hopefully in a way that the wildlife are unaware they are crossing a major interstate,” says Denney.Kendra Chamberlain is Columbia Insight’s contributing editor. As a freelance journalist based in Eugene, she covers the environment, energy and climate change. Her work has appeared in DeSmog Blog, High Country News, InvestigateWest and Ensia.Columbia Insight, based in Hood River is a nonprofit newsroom focused on environmental issues of the Columbia River Basin and the Pacific Northwest.

Chained Monkey Among Latest Wildlife Rescues in Costa Rica

Although Costa Rica is committed to protecting wildlife, unscrupulous individuals continue to violate the rules and insist on keeping wild animals as pets. The National System of Conservation Areas (SINAC) rescued a white-faced monkey that was held in captivity in Jacó. The animal was tied with a chain around its neck, which caused serious injuries, […] The post Chained Monkey Among Latest Wildlife Rescues in Costa Rica appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

Although Costa Rica is committed to protecting wildlife, unscrupulous individuals continue to violate the rules and insist on keeping wild animals as pets. The National System of Conservation Areas (SINAC) rescued a white-faced monkey that was held in captivity in Jacó. The animal was tied with a chain around its neck, which caused serious injuries, according to SINAC personnel. “He no longer had any hair to protect him around the neck because of the chain. He had open wounds that must have caused him a lot of pain,” officials stated. The animal was taken to Zooave, located in La Garita de Alajuela, where it is receiving veterinary medical attention. SINAC emphasized that keeping wildlife in captivity is a crime and urges people to report any cases they know of. “For those who had this animal in captivity, the corresponding complaint was filed with the Public Prosecutor’s Office,” SINAC confirmed. Parrots, parakeets, turtles, snakes, and iguanas are among the wild animals protected by the Wildlife Conservation Law in Costa Rica.   On the other hand, a two-toed sloth cub was rescued in the canton of Upala during an operation involving the Public Force, local residents, and SINAC. The rescue occurred after the officers received information about the female sloth cub, which had been found abandoned by a local family. According to authorities, the animal was handed over to the officers, who, while feeding and caring for her, began searching for the mother in the vicinity. Despite their efforts to locate her, it was not possible. On Wednesday, they coordinated with the wildlife rescue center “Toucan Rescue Ranch” in Río Frío, Sarapiquí, to transfer the calf, where it is receiving the proper care. “The two-toed sloth is a species facing a population decline in Costa Rica, mainly due to the destruction of its natural habitat and illegal capture for keeping as pets,” environmental authorities highlighted. Keeping animals in captivity is a crime in Costa Rica, which carries monetary penalties and even a prison sentence. The post Chained Monkey Among Latest Wildlife Rescues in Costa Rica appeared first on The Tico Times | Costa Rica News | Travel | Real Estate.

Fears of ‘rogue rewilding’ in Scottish Highlands after further lynx sightings

Environmentalists condemn unauthorised releases as ‘reckless’ and ‘highly irresponsible’For a brief moment this week, lynx have been roaming the Scottish Highlands once again. But this was not the way conservationists had hoped to end their 1,000-year absence.On Wednesday, Police Scotland received reports of two lynx in a forest in the Cairngorms national park, sparking a frantic search. That episode ended in less than a day. Both animals were quickly captured by experts from the Royal Zoological Society of Scotland (RZSS) and taken to quarantine facilities at Highland wildlife park. Continue reading...

For a brief moment this week, lynx roamed the Scottish Highlands once again. But this was not the way conservationists had hoped to end their 1,000-year absence.On Wednesday, Police Scotland received reports of two lynx in a forest in the Cairngorms national park, sparking a frantic search. That episode ended in less than a day. Both animals were quickly captured by experts from the Royal Zoological Society of Scotland (RZSS) and taken to quarantine facilities at Highland wildlife park.Yet their delight at a successful operation was shortlived. Early on Friday morning, the RZSS’s network of wildlife cameras caught two more lynx in the same stretch of forest, near Kingussie. The baited traps were redeployed, and its specialists were hunting again.Screen grab taken from video issued by the Royal Zoological Society of Scotland (RZSS) of one of the two Lynx captured in the Cairngorms on Thursday. Photograph: Royal Zoological Society of Scotland/PASpeculation has erupted over who was responsible for the illegal release, and police said enquiries were continuing to establish the full circumstances. Both lynx – who are shy, solitary animals in the wild and not dangerous to humans – appeared tame and showed little sign of being able to survive on their own, according to a witness. The witness said the lynx were found near straw bedding left beside a layby with dead chicks and porcupine quills.On social media, some pointed the finger at rogue rewilders taking the law into their own hands by making the return of lynx a fact on the ground, akin to how beavers returned to the UK through unauthorised “beaver bombing” . Studies indicate that the Highlands could support as many as 400 lynx in the wild and there is strong support for their return among environmental groups. But leading voices in the rewilding sector were quick to condemn this week’s unauthorised release as “reckless” and “highly irresponsible”.Dave Barclay, the RZSS expert leading the hunt for the lynx, was furious. These animals were semi-tame, and “highly habituated to people”, he said, yet had been released in deep winter. Temperatures locally had plunged below -5C, with deep snow cover, and they had been released at the mouth of a forest track heavily used by logging machinery.“All of that compromises the welfare of these animals,” he said. “It is abhorrent what has happened here, and against all international good practice.”Investigators now suspect the lynx could be from a family group. The two captured yesterday are understood to be juveniles, cubs aged about 1 or 2 years of age, while the two spotted on Friday are thought to be an adult and a third juvenile.Ben Goldsmith, an environmentalist who said he was not involved with the release, said: “Like many others, I have been momentarily thrilled by the notion of lynx once again stalking the Cairngorms. Lynx are an iconic native species missing from Britain and they should be back here. The habitat is perfect, these are secretive animals, and there are no good reasons not to reintroduce them.“We don’t know the story behind these missing lynx – perhaps they are abandoned pets that have become unmanageable. Whatever has happened, it seems to have been poorly thought through,” he added.The lynx were found on Danish billionaire Anders Povlsen’s Killiehuntly estate. A spokesperson for WildLand, the company that runs his Scottish estates, said they believed that native predators should only be reintroduced lawfully and in close collaboration with local people.In the UK, citizens must apply to their local council to keep wild animals legally. According to figures collected by Born Free in 2023, 31 lynx were kept by private collectors, although all were housed in England. Experts said that more lynx were likely to be held in unauthorised private collections that were difficult to monitor.“There could be far more lynx in private hands that are actually recorded. If they have cubs, they may not register them. People would be gobsmacked of what people have in their back garden. I know of people who have snow leopards and cougars in their back garden. It’s shocking. It should be banned,” said Dr Paul O’Donoghue, director of the Lynx UK Trust, who also said he was not involved with therelease.Were it not for the English Channel, lynx would probably already have returned to the UK. Now a protected species in Europe, the Eurasian lynx has recovered from a few hundred in the 1950s to as many as 10,000. Research shows there is mixed support for their return in the UK, with strong opposition from the agricultural community, who fear they will attack livestock.Edward Mountain, MSP for the Highlands and Islands and a landowner, said there was a “genuine fear” amongst locals about “guerrilla rewilding”. “We saw it with beavers on the Tay, now there’s talk of reintroducing sea eagles and goshawks. It can change an entire local ecosystem and that’s dangerous if it’s not done properly,” he said.

Why sabre-toothed animals evolved again and again

Sabre teeth can be ideal for puncturing the flesh of prey, which may explain why they evolved in different groups of mammals at least five times

The skull of a saber-toothed tiger (Smilodon)Steve Morton Predators have evolved sabre teeth many times during the history of life – and we now have a better idea why these teeth develop as they do. Sabre teeth have very specific characteristics: they are exceptionally long, sharp canines that tend to be slightly flattened and curved, rather than rounded. Such teeth have independently evolved in different groups of mammals at least five times, and fossils of sabre-tooth predators have been found in North and South America, Europe and Asia. The teeth are first known to have appeared some 270 million years ago, in mammal-like reptiles called gorgonopsids. Another example is Thylacosmilus, which died out about 2.5 million years ago and was most closely related to marsupials. Sabre teeth were last seen in Smilodon, often called sabre-toothed tigers, which existed until about 10,000 years ago. To investigate why these teeth kept re-evolving, Tahlia Pollock at the University of Bristol, UK, and her colleagues looked at the canines of 95 carnivorous mammal species, including 25 sabre-toothed ones. First, the researchers measured the shapes of the teeth to categorise and model them. Then they 3D-printed smaller versions of each tooth in metal and tested their performance in puncture tests, in which the teeth were mechanically pushed into gelatine blocks designed to mimic the density of animal tissue. This showed that the sabre teeth were able to puncture the block with up to 50 per cent less force than the other teeth could, says Pollock. The researchers then assessed the tooth shape and puncture performance data using a measure called the Pareto rank ratio, which judged how optimal the teeth were for strength or puncturing. “A carnivore’s teeth have to be sharp and slender enough to allow the animal to pierce the flesh of their prey, but they also need to be blunt and robust enough to not break while an animal’s biting,” says Pollock. Animals like Smilodon had extremely long sabre teeth. “These teeth were probably popping up again and again because they represent an optimal design for puncture,” says Pollock. “They’re really good at puncturing, but that also means that they’re a little bit fragile.” For instance, the La Brea Tar Pits in California have lots of fossils of Smilodon, some with broken teeth. Other sabre-toothed animals also had teeth that were the ideal shape for a slightly different job. The cat Dinofelis had squatter sabre teeth that balanced puncturing and strength more equally, says Pollock. The teeth of other sabre-toothed species sat between these optimal shapes, which might be why some of them didn’t last too long. “These kinds of things trade off,” says Pollock. “The aspects of shape that make a tooth good at one thing make it bad at the other.” One of the main hypotheses for why sabre-tooth species went extinct is that ecosystems were changing and the huge prey they are thought to have targeted, such as mammoths, were disappearing. The team’s puncture findings back this up. The giant teeth wouldn’t have been as effective for catching prey that were more like the size of a rabbit, and the risk of tooth breakage here may have increased, so the sabre-toothed animals would have been outcompeted by predators that are more effective at hunting such prey, like cats with smaller teeth, says Pollock. “As soon as the ecological or environmental conditions change, the highly specialised sabre-tooth predators were unable to adapt quickly enough and became extinct,” says Stephan Lautenschlager at the University of Birmingham, UK. “I think that’s part of the reason why this sabre-tooth morphology hasn’t evolved again in the present – we don’t have the megafauna,” says Julie Meachen at Des Moines University in Iowa. “The prey is not there.”

Oregon approves key permit for controversial biofuel refinery on Columbia River

Oregon environmental regulators gave a key stamp of approval to a proposed $2.5 billion biofuel refinery along the Columbia River despite continued opposition from environmental groups and tribes over potential impacts to the river and salmon.

Oregon environmental regulators gave a key stamp of approval to a proposed $2.5 billion biofuel refinery along the Columbia River despite continued opposition from environmental groups and tribes over potential impacts to the river and salmon.The NEXT Energy refinery, also known as NXTClean Fuels, plans to manufacture renewable diesel and sustainable aviation fuel at the deepwater port of Port Westward, an industrial park on the outskirts of Clatskanie in Columbia County. Biofuels are considered renewable because they are produced from plants and organic waste products such as cow manure or agricultural residue.The Department of Environmental Quality on Tuesday approved a water quality certification for NEXT, allowing the Houston-based company to move forward with the project. The certification – marking the final comprehensive state review – is a requirement for the refinery to secure a federal permit from the U.S. Army Corps of Engineers.The state agency previously twice denied NEXT’s application for the certification, in 2021 and 2022, “due to insufficient information to evaluate the permit application.” More recently, the company secured state approvals for a removal fill permit and air permit in 2022 and county land-use permits in 2024.Proponents hail biofuels for their ability to reduce carbon emissions as a stop-gap measure before the transportation sector can move to full-on electrification as climate groups advocate. Countries across the world, including the U.S., individual states like Oregon and cities such as Portland have bet on biofuels to reduce carbon emissions from cars and trucks via fuel blending mandates that require a certain percentage of biofuels to be mixed with traditional fossil fuels.Environmental groups have raised concerns in recent years about the impacts of biofuel production, storage and transportation, including deforestation, the displacement of food production and the significant greenhouse gas emissions from various biofuel sources.The Port Westward refinery plans to produce up to 50,000 barrels per day – or more than 750 million gallons a year – of renewable diesel and sustainable aviation fuel. The fuels will be shipped offsite via pipelines, trucks and railcars to markets worldwide.Environmental groups this week said state regulators “caved in” to pressure from the building trades, putting the river and people’s well-being at risk from possible spills.DEQ spokesperson Michael Loch declined to directly comment on that statement.“DEQ carefully reviewed NEXT’s application for a 401 water quality certification and determined that the proposed project meets the state’s water quality standards,” Loch said.NEXT has said it plans to make the biofuels at Port Westward from used cooking oil, fish grease, animal tallows and seed oils. It already has an agreement with a Vietnamese company to import fish grease, company spokesperson Michael Hinrichs said. And it’s in discussions with other companies for used cooking oil and animal tallows from Japan, South Korea, Indonesia, Singapore, Brazil and Canada, he said.Conservation groups in Oregon dispute those promises, pointing to the company’s filings with the U.S. Securities and Exchange Commission.“NEXT’s documentation shows that the majority of its feedstocks will be from corn and soybean oil, which are purpose-grown feedstocks with a higher carbon footprint, and will be shipped to the facility on long trains,” said Audrey Leonard, a staff attorney with Columbia Riverkeeper, a Portland-based environmental group focused on protecting the river that has fought the project for years.Columbia Riverkeeper and other opponents of the project also argue the refinery could damage water quality in the Columbia and its tributaries, including several area sloughs, and degrade local wetlands in the event of spills from the refinery and its railyard caused by accidents or a major earthquake.The proposed refinery would be built on unstable soil behind dikes that are next to high-value farmland and salmon habitat, Leonard said. Renewable fuels are just as flammable as fossil fuels, she said.In addition, the proposed refinery would use large volumes of fracked gas, a fossil fuel, in the production of renewable fuels, resulting in significant greenhouse gas emissions, Leonard said. NEXT’s air permit allows over 1 million tons a year of greenhouse gas emissions from the fracked gas operations to produce the fuel at the refinery. For comparison, the average petroleum refinery emits 1.2 million tons per year and Intel’s two campuses are authorized to emit a combined 1.7 million tons of greenhouse gases per year.The region’s tribes also have sent letters opposing the refinery, saying it will degrade water quality and negatively affect juvenile salmon and other aquatic species.“This project is a massive step backwards from the years of effort to improve aquatic habitat,” wrote Aja K. DeCoteau, executive director with the Columbia River Inter-Tribal Fish Commission which manages fisheries for local tribes.Other groups have expressed support for the project and see it as a climate change solution that will reduce emissions and pollution.“On our way to a zero-emission future, we must do everything we can to reduce greenhouse gas emissions and toxic air pollution in the short term through strategies like rapidly expanding the use of renewable diesel and sustainable aviation fuel,” wrote Tim Miller, the director of Oregon Business for Climate, a nonprofit group focused on mobilizing industry support to advance climate policy in Oregon.Now that the refinery has the water certification in hand, the Army Corps of Engineers will issue a draft environmental impact statement for public review later this year and will evaluate whether to issue a federal water quality permit for the project.NEXT still must secure two state stormwater permits, though those are routine and typically filed after approval of the federal permit.The company is also developing a second biofuel refinery in Lakeview, 100 miles east of Klamath Falls, after acquiring an existing never-opened facility in 2023 from Red Rock Biofuels when that company went into foreclosure. The Lakeview plant will use wood waste from local forest thinning, logging and wildfire management activities to make renewable natural gas, known as RNG. The company has yet to announce when the plant will launch.— Gosia Wozniacka covers environmental justice, climate change, the clean energy transition and other environmental issues. Reach her at gwozniacka@oregonian.com or 971-421-3154.Our journalism needs your support. Subscribe today to OregonLive.com.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.