Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

People Hate Daylight Saving. Science Tells Us Why.

News Feed
Monday, March 11, 2024

In the summer of 2017, when communication professor Jeffery Gentry moved from Oklahoma to accept a position at Eastern New Mexico University, he was pleasantly surprised to find it easier to get up in the morning. The difference, he realized, was early morning light. On September mornings in Portales, New Mexico, Gentry rose with the sun at around 6:30 a.m., but at that time of day in Oklahoma, it was still dark.As the Earth rotates, the sun reaches the eastern edge of a time zone first, with sunrise and sunset occurring progressively later as you move west. Gentry’s move had taken him from the western side of Central Time in Oklahoma to the eastern edge of Mountain Time. Following his curiosity into the scientific literature, he discovered the field of chronobiology, the study of biological rhythms, such as how cycles of daylight and dark affect living things. “I really just stumbled upon it from being a guinea pig in my own experiment,” he said.In 2022, Gentry and an interdisciplinary team of colleagues added to that body of research, publishing a study in the journal Time & Society that showed the rate of fatal motor-vehicle accidents was highest for people living in the far west of a time zone, where the sun rises and sets at least an hour later than on the eastern side. Chronobiology research shows that longer evening light can keep people up later and that, as Gentry found, morning darkness can make it harder to get going for work or school. Western-edge folks may suffer more deadly car wrecks, the team theorized, because they are commuting in the dark while sleep deprived and not fully alert.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.With all the hullabaloo over the health and safety of setting clocks forward an hour in the spring for Daylight Saving Time (DST) and back in the fall with Standard Time (ST), could where you live in a time zone actually have a more profound effect? I asked Gentry. “That’s very possible,” he said.Time researchers make this point, and research results and public opinion polls reflect it: Something is awry about the way we mark time. Those problems start with the annual toggle between DST and ST. In these days of sharp division, poll after poll finds most people unified in their dislike of switching clocks back and forth with the season. However, the question of whether to stick with ST or DST year-round once again sends people to different camps.Scientists generally advocate for permanent ST, or “natural time,” as Gentry calls it because it better aligns people’s schedules with the sun year-round. “People who study the issue are all in agreement,” he said. On the other hand, public opinion on both sides of the Atlantic tends to favor permanent DST — and many politicians agree — perhaps because of the positive associations with summer sunshine. (A bill to make that switch passed the U.S. Senate unanimously in 2022, but then stalled in the House; a new version was recently reintroduced.)Some scientists have fired back that such a move would be a grave mistake: The German newspaper Die Welt quoted pioneering chronobiologist and sleep researcher Till Roenneberg warning that permanent DST would make Europeans “dicker, dümmer und grantiger” (fatter, dumber, and grumpier).The conflict over DST versus ST makes for grabby headlines and engaging social media posts. But focusing on the clash misses the bigger questions about how we choose to mark time. A close look at the research reveals not only uncertainties about the effects of DST, but also about other factors, such as how time zones are drawn and, possibly most important, how structuring our schedules around light and dark could have a profound impact on health and safety.“We absolutely need to think about our time,” said Beth Malow, a neurologist and director of the sleep division at Vanderbilt University Medical Center. “And how are we going to actually figure this out as a country?”The 24-hour cycle of light and dark created by the Earth’s rotation is the force that rules our lives. Homer’s rosy-fingered dawn is what chronobiologists call a zeitgeber, German for “time giver” — a natural signal that touches off cyclical processes in the body governing our internal clocks. Morning light, for example, cues our bodies to ramp up production of cortisol, a hormone that helps us feel awake and alert. Meanwhile, as cortisol dwindles through the evening, darkness triggers the sleep-promoting hormone melatonin.In the language of chronobiologists, the biological clock rhythms of humans and other animals are entrained, or synchronized, to the solar clock.Humans have devised schemes such as time zones and Daylight Saving Time to optimize their interactions with these natural cycles of light and dark. But the match between time policy and the zeitgeber is often imperfect.When we set clocks forward with DST in the spring, many people suddenly have to get up for school or work before the light has jumpstarted physiological processes associated with wakefulness. Cortisol levels peak about an hour later during DST according to a 2014 Australian study. Then, at the other end of the day, people have to go to bed before hours of darkness have signaled to their body that it’s time to sleep.The abrupt change, especially to DST in the spring, can wreak havoc on health and safety. In a 2020 commentary for JAMA Neurology, Beth Malow and colleagues outline evidence for negative health effects during the DST transition, including less and poorer quality sleep, an increased risk of stroke and heart attack, and a decreased sense of well-being, particularly for men who work full time.In addition, although the research on road safety is mixed, some studies find an uptick in traffic accidents and fatalities in the days after the DST switch.However, those bad effects are fleeting. The longer-term impact of DST is hard to research because the amount of sunlight changes with the seasons. Only one study has directly compared permanent DST to permanent ST: a seven-year study of students aged 10 to 24 living in northwestern Russia when the government mandated a switch from seasonal DST to year-around DST in 2011 — and then switched again, to permanent ST, in 2014.Permanent DST meant that the sun also rose and set later in the winter. Results published in 2017 associated year-round DST with a greater likelihood of feeling down in the winter as well as sleeping later on weekends, a phenomenon known as social jet lag. Chronobiologist Till Roenneberg and colleagues coined the term nearly two decades ago to describe the chronic sleep deprivation that people experience when they have to get up for school or work before they would awaken naturally.“Social jet lag is the umbrella term for not being able to live in sync with one’s biological time,” said Roenneberg. He likens wakening with an alarm to stopping the washing machine before the cycle is complete: “All we get is wet and dirty laundry,” he said. “And that’s what we get in our body.”Social jet lag is an artifact of our modern world. Nearly half of U.S. adults sleep at least an hour later when they have the chance, according to a study published in JAMA Network Open in 2022. And research suggests that the phenomenon is especially pronounced in adolescents due to both biology — melatonin release tends to be delayed in that age group, for example — and environmental factors such as late nights on electronics and early school-start times.Research by Roenneberg and others have associated social jet lag — and the sleep deprivation it reflects — with smoking and consuming higher amounts of alcohol and caffeine as well as a range of ill health effects including obesity, metabolic syndrome (a group of health conditions that increase the risk of heart disease, stroke, and type 2 diabetes), risk factors for heart disease, and depression. Studies have also linked social jet lag to worse academic performance for high school and college students.In a thorough review, Roenneberg and colleagues argue that by pushing sunrise and sunset an hour later, permanent DST is bound to worsen social jet lag. But the Russian study is the only direct evidence of that link, and it’s uncertain whether those effects, which the Russian researchers characterize as “small or very small,” apply to older age groups or people living where the cycles of light and dark are less extreme. In Vorkuta, one of three cities in the study, for example, the sun never rises for a time in the winter and never sets for six weeks in the summer.Like all of the researchers I spoke with for this story, Derk-Jan Dijk, a sleep and physiology professor at the University of Surrey in England, sees potential harm in permanently setting our clocks an hour ahead because in the winter many people would have to start their day in darkness. “Any schedule that implies that you have to get up before sunrise may cause problems,” said Dijk. But he also doesn’t like to overstate the case against DST, especially when we observe it seasonally.“The entire discussion about Daylight Saving Time and how bad it is upsets me a little bit,” he told me. The slight effects seen during the transition to DST in the spring and then back to ST in the autumn, quickly disappear he noted. “There is no good evidence that during the entire summer, when we are on Daylight Saving Time, everything is worse,” he said. “I don’t think the evidence is there.”Polls show that we generally dislike mucking with time twice a year. Nearly two-thirds of Americans want to eliminate the changing of clocks, according to a nationally representative survey of 1,500 U.S. adults conducted by The Economist magazine and market research company YouGov in 2021.Permanent DST enjoys bipartisan support among many political leaders in the U.S. In a document supporting the Sunshine Protection Act, Sen. Marco Rubio, Republican of Florida, cites evidence that DST promotes health, safety, recreation, commerce, and energy savings. However, some of that research focuses on the harms of switching back and forth, so one could also use it to support year-around ST.In other cases, Rubio cherry picks studies showing benefits to DST while ignoring contradictory research. A 2020 report from the Congressional Research Service prepared for members of the U.S. Congress did not find substantial evidence that DST improves health and safety or that it reduces energy consumption by much — if at all.And, in drumming up supportive evidence, the permanent DST camp hits the same wall as the eliminate DST camp: Researchers haven’t sufficiently studied the effects of year-around DST.In a controversial 2020 perspective for the journal Clocks & Sleep, sleep scientists Christina Blume and Manuel Schabus call on the scientific establishment to own up to uncertainties in the existing data and to do the research needed to fill those holes. Still, even Blume acknowledges that taken as a whole, the available data makes a decent case that changing clocks to shift light from the morning to the evening could be bad for our health and safety.“We all agree as researchers that the safer option is to go for perennial Standard Time,” said Blume, a postdoctoral researcher at the University of Basel in Switzerland.The nonprofit organization Save Standard Time lists endorsements from more than 30 sleep-science and medical organizations — including the American Academy of Sleep Medicine, the American Medical Association, and the American Academy of Neurology among others — in addition to individual scientists and researchers.Here, I feel compelled to note that the last time we tried permanent DST, it didn’t go well. In attempt to conserve energy, Congress established a trial period of year-round DST in late 1973. But public approval dropped precipitously as Americans faced the reality of dark winter mornings. By October 1974, the country had reverted to four months of yearly ST.The disconnect between the perception and reality arises because of how we think and talk about the seasons and time change, said neurologist Malow, who testified before the U.S. Congress about the benefits of permanent ST. “People have associated being on standard time, with it being cold and winter and dark,” she said. Meanwhile “springing forward” coincides with the return of warmer, longer days.But, of course, DST doesn’t buy you more light. Winter days are short and summer days are long regardless of how you mark time.In addition to DST, other factors about how we control light and time in our environment — how we draw time zones, use artificial light, and set school and work schedules — affect our relationship to the solar clock as well as health and safety.To understand time zones, it helps to go back to basic geography. The Earth rotates all the way around in 24 hours. Imagine longitude lines running north and south separating the globe into 24 segments, each marking one hour’s rotation. Time zones roughly follow those longitude lines. As the Earth rotates, the sun rises and sets first on the eastern edge of a time zone, and then about an hour later on the western edge.Things gets interesting on either side of a time-zone boundary, where the sun position is essentially the same, but the clock time is different. In late January, for example, the sun sets around 6:10 p.m. in Columbus, Georgia in Eastern Time, but at 5:10 p.m. just over the time-zone border in Auburn, Alabama.People living on the late-sunset side of a time-zone border, like those in Columbus, tend to go to bed later, sleeping an average of around 20 minutes less each night than those on the early-sunset side, like those in Auburn, according to a 2019 study published in the Journal of Health Economics. Drawing on large national surveys and data from the Centers for Disease Control and Prevention, researchers found that health outcomes associated with sleep deficiency and social jet lag were worse for the late-sunset folks. Their wages were also about 3 percent lower than those of early-sunset people, who, better rested, were presumably more productive.“The effects are larger when you zoom in really close the border,” said study co-author Osea Giuntella, an economics professor at the University of Pittsburgh.Seasonal changes, including the shift to DST in the spring, didn’t have a significant effect. Giuntella said that it’s possible that where you live in a time zone could have a bigger effect than DST, but he couldn’t be sure because DST wasn’t a focus of the study. That would be harder to study, he noted, as the time change typically affects people on both sides of a time-zone border. (Arizona is the only state in the continental U.S. that does not observe DST.)Another tricky aspect of time zones is that they don’t strictly adhere to longitude lines, but instead meander to accommodate city and state boundaries. In the U.S., all the time zones except Pacific Time encompass areas west of what would be the natural time-zone boundary. Communication professor Jeffery Gentry and a team that included Eastern New Mexico University professors with expertise in geography, biology, and education have dubbed those regions west of the geographic time zone “eccentric time localities,” or ETLs.In these ETLs, sunrise and sunset time may occur more than an hour later than the eastern side of the time zone. For example, geographically, Marquette, Mich., should be in Central Time, but instead the city lies in an ETL in Eastern Time. In late October, the sun rises at around 7:10 a.m. Eastern Time in Bangor, Maine, but not until around 8:30 a.m. in Marquette.Gentry and colleague’s analysis of more than 400,000 fatal traffic accidents that occurred between 2006 and 2017 showed that ETL residents suffered a 22 percent higher fatality rate than those living elsewhere in the time zone. If the death rate in ETLs had been the same as the rest of the time zone, they would have experienced about 15,000 fewer fatalities over 12 years, according to the analysis.The most likely explanation, according to the researchers, is that people in ETLs are forced to keep schedules that are out of sync with cues from the solar clock — what the authors call “dysfunctional social time.” Compared to people living with more light in the morning and less in the evening, Gentry told me, ETL dwellers may not sleep as long or as well and may be less sharp for their morning commute.The authors accounted for differences in urban and rural areas, but not for other factors linked to traffic accidents such as speed limits, drunk driving, and road conditions. Still, Gentry said that the strength of the study is the size and completeness of the data set, meaning that small regional differences are unlikely to affect the overall results. “We eliminated everything we could and we still have a pretty stark number here,” said Gentry.Gentry would like to see time zones redrawn. But other policy fixes could help as well. The authors didn’t explore whether accidents varied by season, but they found evidence from other research strong enough to presume that DST magnifies the potential harm of living in an ETL. Gentry said that notion leaves him hopeful because he views DST as simple enough to fix. “I’m more positive that if Daylight Saving Time were eliminated, that we might save quite a few lives.”The focus on issues like DST and time zones, some researchers say, can overlook another key part of the time policy puzzle.In our artificially lit world, our internal clocks are affected by far more than sunrise and sunset. No doubt, the sun is the strongest zeitgeber, but artificial light also affects our internal clocks, said sleep researcher Derk-Jan Dijk. He dismissed the notion that humans are entrained solely to the sun as a romantic idea. “We, to a large extent, have divorced our activity schedules from the natural light-dark cycle,” he said.A body of research shows that even dim light can suppress melatonin production and delay sleep. Blue light from fluorescent lights and our ubiquitous screens, which has the shortest wavelength and highest energy of light that the human eye can see, has a particularly powerful effect on circadian rhythms.Dijk is frustrated that focus on DST overlooks harder questions about the built environment and how we choose to live and work. “The more general question is how the heck do we actually come up with our work schedules and social schedules, which basically determine to what extent we make use of natural light versus man-made light?” said Dijk. Aligning our sleep and work schedules with the light that is available for free would not only be better for us, but, because we’d use less electricity to power devices late into the night, better for the planet.Doing so goes far beyond the details of the daylight saving debate — although it involves changes that are not so easily legislated by Congress.Like many other researchers, Dijk advocates for adjusting school-start times and allowing flexible work schedules so that people don’t have to get up before sunrise. In the time-zone study by Giuntella and colleagues, for example, when people could sleep later in the morning — because they were unemployed or started work later — they didn’t seem to experience the negative effects of living with later sunsets.And, although it sounds like a radical idea, states could also adjust time-zone boundaries. “I don’t think we want 10 time zones, but maybe we add one for the Northeast,” said Malow. Because the New England states are so far east, winter sunsets come early — before 4 p.m. in December in parts of Maine.And then there is the question of whether so-called ETLs would better align with the time zone to their west. For example, Malow lives in the Nashville area in Central Time, but part of the state juts into Eastern time. “If we could get Eastern Tennessee into Central Time, that would solve a lot of problems,” she said. As it is, if the country shifts to permanent DST, the cities of Chattanooga and Knoxville wouldn’t see the sun until nearly 9 a.m. in January or darkness until nearly 10 p.m. in June.Chronobiologist Till Roenneberg and colleagues have also suggested redrawing time-zone boundaries in Europe, which in some cases are even more skewed than those in the U.S.Ideally, Malow would like to see all of the above — flexible schedules, adjusted time zones, and permanent ST. “It’s important to look at the whole picture, and for us to figure something out,” said Malow. She’s somewhat hopeful as the discussions about how we mark time are not particularly partisan and changes wouldn’t cost much if anything.It could even bring people together across the political divide, said Malow. “Wouldn’t that be great?” she said. “Stopping the clock back and forth could be the great unifier in our country.”This article was originally published on Undark. Read the original article.

Something is awry about the way we mark time. Can research and policy changes help us reset the clocks?

In the summer of 2017, when communication professor Jeffery Gentry moved from Oklahoma to accept a position at Eastern New Mexico University, he was pleasantly surprised to find it easier to get up in the morning. The difference, he realized, was early morning light. On September mornings in Portales, New Mexico, Gentry rose with the sun at around 6:30 a.m., but at that time of day in Oklahoma, it was still dark.

As the Earth rotates, the sun reaches the eastern edge of a time zone first, with sunrise and sunset occurring progressively later as you move west. Gentry’s move had taken him from the western side of Central Time in Oklahoma to the eastern edge of Mountain Time. Following his curiosity into the scientific literature, he discovered the field of chronobiology, the study of biological rhythms, such as how cycles of daylight and dark affect living things. “I really just stumbled upon it from being a guinea pig in my own experiment,” he said.

In 2022, Gentry and an interdisciplinary team of colleagues added to that body of research, publishing a study in the journal Time & Society that showed the rate of fatal motor-vehicle accidents was highest for people living in the far west of a time zone, where the sun rises and sets at least an hour later than on the eastern side. Chronobiology research shows that longer evening light can keep people up later and that, as Gentry found, morning darkness can make it harder to get going for work or school. Western-edge folks may suffer more deadly car wrecks, the team theorized, because they are commuting in the dark while sleep deprived and not fully alert.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


With all the hullabaloo over the health and safety of setting clocks forward an hour in the spring for Daylight Saving Time (DST) and back in the fall with Standard Time (ST), could where you live in a time zone actually have a more profound effect? I asked Gentry. “That’s very possible,” he said.

Time researchers make this point, and research results and public opinion polls reflect it: Something is awry about the way we mark time. Those problems start with the annual toggle between DST and ST. In these days of sharp division, poll after poll finds most people unified in their dislike of switching clocks back and forth with the season. However, the question of whether to stick with ST or DST year-round once again sends people to different camps.

Scientists generally advocate for permanent ST, or “natural time,” as Gentry calls it because it better aligns people’s schedules with the sun year-round. “People who study the issue are all in agreement,” he said. On the other hand, public opinion on both sides of the Atlantic tends to favor permanent DST — and many politicians agree — perhaps because of the positive associations with summer sunshine. (A bill to make that switch passed the U.S. Senate unanimously in 2022, but then stalled in the House; a new version was recently reintroduced.)

Some scientists have fired back that such a move would be a grave mistake: The German newspaper Die Welt quoted pioneering chronobiologist and sleep researcher Till Roenneberg warning that permanent DST would make Europeans “dicker, dümmer und grantiger” (fatter, dumber, and grumpier).

The conflict over DST versus ST makes for grabby headlines and engaging social media posts. But focusing on the clash misses the bigger questions about how we choose to mark time. A close look at the research reveals not only uncertainties about the effects of DST, but also about other factors, such as how time zones are drawn and, possibly most important, how structuring our schedules around light and dark could have a profound impact on health and safety.

“We absolutely need to think about our time,” said Beth Malow, a neurologist and director of the sleep division at Vanderbilt University Medical Center. “And how are we going to actually figure this out as a country?”

The 24-hour cycle of light and dark created by the Earth’s rotation is the force that rules our lives. Homer’s rosy-fingered dawn is what chronobiologists call a zeitgeber, German for “time giver” — a natural signal that touches off cyclical processes in the body governing our internal clocks. Morning light, for example, cues our bodies to ramp up production of cortisol, a hormone that helps us feel awake and alert. Meanwhile, as cortisol dwindles through the evening, darkness triggers the sleep-promoting hormone melatonin.

In the language of chronobiologists, the biological clock rhythms of humans and other animals are entrained, or synchronized, to the solar clock.

Humans have devised schemes such as time zones and Daylight Saving Time to optimize their interactions with these natural cycles of light and dark. But the match between time policy and the zeitgeber is often imperfect.

When we set clocks forward with DST in the spring, many people suddenly have to get up for school or work before the light has jumpstarted physiological processes associated with wakefulness. Cortisol levels peak about an hour later during DST according to a 2014 Australian study. Then, at the other end of the day, people have to go to bed before hours of darkness have signaled to their body that it’s time to sleep.

The abrupt change, especially to DST in the spring, can wreak havoc on health and safety. In a 2020 commentary for JAMA Neurology, Beth Malow and colleagues outline evidence for negative health effects during the DST transition, including less and poorer quality sleep, an increased risk of stroke and heart attack, and a decreased sense of well-being, particularly for men who work full time.

In addition, although the research on road safety is mixed, some studies find an uptick in traffic accidents and fatalities in the days after the DST switch.

However, those bad effects are fleeting. The longer-term impact of DST is hard to research because the amount of sunlight changes with the seasons. Only one study has directly compared permanent DST to permanent ST: a seven-year study of students aged 10 to 24 living in northwestern Russia when the government mandated a switch from seasonal DST to year-around DST in 2011 — and then switched again, to permanent ST, in 2014.

Permanent DST meant that the sun also rose and set later in the winter. Results published in 2017 associated year-round DST with a greater likelihood of feeling down in the winter as well as sleeping later on weekends, a phenomenon known as social jet lag. Chronobiologist Till Roenneberg and colleagues coined the term nearly two decades ago to describe the chronic sleep deprivation that people experience when they have to get up for school or work before they would awaken naturally.

“Social jet lag is the umbrella term for not being able to live in sync with one’s biological time,” said Roenneberg. He likens wakening with an alarm to stopping the washing machine before the cycle is complete: “All we get is wet and dirty laundry,” he said. “And that’s what we get in our body.”

Social jet lag is an artifact of our modern world. Nearly half of U.S. adults sleep at least an hour later when they have the chance, according to a study published in JAMA Network Open in 2022. And research suggests that the phenomenon is especially pronounced in adolescents due to both biology — melatonin release tends to be delayed in that age group, for example — and environmental factors such as late nights on electronics and early school-start times.

Research by Roenneberg and others have associated social jet lag — and the sleep deprivation it reflects — with smoking and consuming higher amounts of alcohol and caffeine as well as a range of ill health effects including obesity, metabolic syndrome (a group of health conditions that increase the risk of heart disease, stroke, and type 2 diabetes), risk factors for heart disease, and depression. Studies have also linked social jet lag to worse academic performance for high school and college students.

In a thorough review, Roenneberg and colleagues argue that by pushing sunrise and sunset an hour later, permanent DST is bound to worsen social jet lag. But the Russian study is the only direct evidence of that link, and it’s uncertain whether those effects, which the Russian researchers characterize as “small or very small,” apply to older age groups or people living where the cycles of light and dark are less extreme. In Vorkuta, one of three cities in the study, for example, the sun never rises for a time in the winter and never sets for six weeks in the summer.

Like all of the researchers I spoke with for this story, Derk-Jan Dijk, a sleep and physiology professor at the University of Surrey in England, sees potential harm in permanently setting our clocks an hour ahead because in the winter many people would have to start their day in darkness. “Any schedule that implies that you have to get up before sunrise may cause problems,” said Dijk. But he also doesn’t like to overstate the case against DST, especially when we observe it seasonally.

“The entire discussion about Daylight Saving Time and how bad it is upsets me a little bit,” he told me. The slight effects seen during the transition to DST in the spring and then back to ST in the autumn, quickly disappear he noted. “There is no good evidence that during the entire summer, when we are on Daylight Saving Time, everything is worse,” he said. “I don’t think the evidence is there.”

Polls show that we generally dislike mucking with time twice a year. Nearly two-thirds of Americans want to eliminate the changing of clocks, according to a nationally representative survey of 1,500 U.S. adults conducted by The Economist magazine and market research company YouGov in 2021.

Permanent DST enjoys bipartisan support among many political leaders in the U.S. In a document supporting the Sunshine Protection Act, Sen. Marco Rubio, Republican of Florida, cites evidence that DST promotes health, safety, recreation, commerce, and energy savings. However, some of that research focuses on the harms of switching back and forth, so one could also use it to support year-around ST.

In other cases, Rubio cherry picks studies showing benefits to DST while ignoring contradictory research. A 2020 report from the Congressional Research Service prepared for members of the U.S. Congress did not find substantial evidence that DST improves health and safety or that it reduces energy consumption by much — if at all.

And, in drumming up supportive evidence, the permanent DST camp hits the same wall as the eliminate DST camp: Researchers haven’t sufficiently studied the effects of year-around DST.

In a controversial 2020 perspective for the journal Clocks & Sleep, sleep scientists Christina Blume and Manuel Schabus call on the scientific establishment to own up to uncertainties in the existing data and to do the research needed to fill those holes. Still, even Blume acknowledges that taken as a whole, the available data makes a decent case that changing clocks to shift light from the morning to the evening could be bad for our health and safety.

“We all agree as researchers that the safer option is to go for perennial Standard Time,” said Blume, a postdoctoral researcher at the University of Basel in Switzerland.

The nonprofit organization Save Standard Time lists endorsements from more than 30 sleep-science and medical organizations — including the American Academy of Sleep Medicine, the American Medical Association, and the American Academy of Neurology among others — in addition to individual scientists and researchers.

Here, I feel compelled to note that the last time we tried permanent DST, it didn’t go well. In attempt to conserve energy, Congress established a trial period of year-round DST in late 1973. But public approval dropped precipitously as Americans faced the reality of dark winter mornings. By October 1974, the country had reverted to four months of yearly ST.

The disconnect between the perception and reality arises because of how we think and talk about the seasons and time change, said neurologist Malow, who testified before the U.S. Congress about the benefits of permanent ST. “People have associated being on standard time, with it being cold and winter and dark,” she said. Meanwhile “springing forward” coincides with the return of warmer, longer days.

But, of course, DST doesn’t buy you more light. Winter days are short and summer days are long regardless of how you mark time.

In addition to DST, other factors about how we control light and time in our environment — how we draw time zones, use artificial light, and set school and work schedules — affect our relationship to the solar clock as well as health and safety.

To understand time zones, it helps to go back to basic geography. The Earth rotates all the way around in 24 hours. Imagine longitude lines running north and south separating the globe into 24 segments, each marking one hour’s rotation. Time zones roughly follow those longitude lines. As the Earth rotates, the sun rises and sets first on the eastern edge of a time zone, and then about an hour later on the western edge.

Things gets interesting on either side of a time-zone boundary, where the sun position is essentially the same, but the clock time is different. In late January, for example, the sun sets around 6:10 p.m. in Columbus, Georgia in Eastern Time, but at 5:10 p.m. just over the time-zone border in Auburn, Alabama.

People living on the late-sunset side of a time-zone border, like those in Columbus, tend to go to bed later, sleeping an average of around 20 minutes less each night than those on the early-sunset side, like those in Auburn, according to a 2019 study published in the Journal of Health Economics. Drawing on large national surveys and data from the Centers for Disease Control and Prevention, researchers found that health outcomes associated with sleep deficiency and social jet lag were worse for the late-sunset folks. Their wages were also about 3 percent lower than those of early-sunset people, who, better rested, were presumably more productive.

“The effects are larger when you zoom in really close the border,” said study co-author Osea Giuntella, an economics professor at the University of Pittsburgh.

Seasonal changes, including the shift to DST in the spring, didn’t have a significant effect. Giuntella said that it’s possible that where you live in a time zone could have a bigger effect than DST, but he couldn’t be sure because DST wasn’t a focus of the study. That would be harder to study, he noted, as the time change typically affects people on both sides of a time-zone border. (Arizona is the only state in the continental U.S. that does not observe DST.)

Another tricky aspect of time zones is that they don’t strictly adhere to longitude lines, but instead meander to accommodate city and state boundaries. In the U.S., all the time zones except Pacific Time encompass areas west of what would be the natural time-zone boundary. Communication professor Jeffery Gentry and a team that included Eastern New Mexico University professors with expertise in geography, biology, and education have dubbed those regions west of the geographic time zone “eccentric time localities,” or ETLs.

In these ETLs, sunrise and sunset time may occur more than an hour later than the eastern side of the time zone. For example, geographically, Marquette, Mich., should be in Central Time, but instead the city lies in an ETL in Eastern Time. In late October, the sun rises at around 7:10 a.m. Eastern Time in Bangor, Maine, but not until around 8:30 a.m. in Marquette.

Gentry and colleague’s analysis of more than 400,000 fatal traffic accidents that occurred between 2006 and 2017 showed that ETL residents suffered a 22 percent higher fatality rate than those living elsewhere in the time zone. If the death rate in ETLs had been the same as the rest of the time zone, they would have experienced about 15,000 fewer fatalities over 12 years, according to the analysis.

The most likely explanation, according to the researchers, is that people in ETLs are forced to keep schedules that are out of sync with cues from the solar clock — what the authors call “dysfunctional social time.” Compared to people living with more light in the morning and less in the evening, Gentry told me, ETL dwellers may not sleep as long or as well and may be less sharp for their morning commute.

The authors accounted for differences in urban and rural areas, but not for other factors linked to traffic accidents such as speed limits, drunk driving, and road conditions. Still, Gentry said that the strength of the study is the size and completeness of the data set, meaning that small regional differences are unlikely to affect the overall results. “We eliminated everything we could and we still have a pretty stark number here,” said Gentry.

Gentry would like to see time zones redrawn. But other policy fixes could help as well. The authors didn’t explore whether accidents varied by season, but they found evidence from other research strong enough to presume that DST magnifies the potential harm of living in an ETL. Gentry said that notion leaves him hopeful because he views DST as simple enough to fix. “I’m more positive that if Daylight Saving Time were eliminated, that we might save quite a few lives.”

The focus on issues like DST and time zones, some researchers say, can overlook another key part of the time policy puzzle.

In our artificially lit world, our internal clocks are affected by far more than sunrise and sunset. No doubt, the sun is the strongest zeitgeber, but artificial light also affects our internal clocks, said sleep researcher Derk-Jan Dijk. He dismissed the notion that humans are entrained solely to the sun as a romantic idea. “We, to a large extent, have divorced our activity schedules from the natural light-dark cycle,” he said.

A body of research shows that even dim light can suppress melatonin production and delay sleep. Blue light from fluorescent lights and our ubiquitous screens, which has the shortest wavelength and highest energy of light that the human eye can see, has a particularly powerful effect on circadian rhythms.

Dijk is frustrated that focus on DST overlooks harder questions about the built environment and how we choose to live and work. “The more general question is how the heck do we actually come up with our work schedules and social schedules, which basically determine to what extent we make use of natural light versus man-made light?” said Dijk. Aligning our sleep and work schedules with the light that is available for free would not only be better for us, but, because we’d use less electricity to power devices late into the night, better for the planet.

Doing so goes far beyond the details of the daylight saving debate — although it involves changes that are not so easily legislated by Congress.

Like many other researchers, Dijk advocates for adjusting school-start times and allowing flexible work schedules so that people don’t have to get up before sunrise. In the time-zone study by Giuntella and colleagues, for example, when people could sleep later in the morning — because they were unemployed or started work later — they didn’t seem to experience the negative effects of living with later sunsets.

And, although it sounds like a radical idea, states could also adjust time-zone boundaries. “I don’t think we want 10 time zones, but maybe we add one for the Northeast,” said Malow. Because the New England states are so far east, winter sunsets come early — before 4 p.m. in December in parts of Maine.

And then there is the question of whether so-called ETLs would better align with the time zone to their west. For example, Malow lives in the Nashville area in Central Time, but part of the state juts into Eastern time. “If we could get Eastern Tennessee into Central Time, that would solve a lot of problems,” she said. As it is, if the country shifts to permanent DST, the cities of Chattanooga and Knoxville wouldn’t see the sun until nearly 9 a.m. in January or darkness until nearly 10 p.m. in June.

Chronobiologist Till Roenneberg and colleagues have also suggested redrawing time-zone boundaries in Europe, which in some cases are even more skewed than those in the U.S.

Ideally, Malow would like to see all of the above — flexible schedules, adjusted time zones, and permanent ST. “It’s important to look at the whole picture, and for us to figure something out,” said Malow. She’s somewhat hopeful as the discussions about how we mark time are not particularly partisan and changes wouldn’t cost much if anything.

It could even bring people together across the political divide, said Malow. “Wouldn’t that be great?” she said. “Stopping the clock back and forth could be the great unifier in our country.”

This article was originally published on Undark. Read the original article.

Read the full story here.
Photos courtesy of

Loss of bats to lethal fungus linked to 1,300 child deaths in US, study says

Because bats feed on crop pests, their disappearance led to a surge in pesticide use. Research found a rise in infant mortality in areas where the bats had been wiped outIn 2006, a deadly fungus started killing bat colonies across the United States. Now, an environmental economist has linked their loss to the deaths of more than 1,300 children.The study, published in Science on Thursday, found that farmers dramatically increased pesticide use after the bat die-offs, which was in turn linked to an average infant mortality increase of nearly 8%. Unusually, the research suggests a causative link between human and bat wellbeing. Continue reading...

In 2006, a deadly fungus started killing bat colonies across the United States. Now, an environmental economist has linked their loss to the deaths of more than 1,300 children.The study, published in Science on Thursday, found that farmers dramatically increased pesticide use after the bat die-offs, which was in turn linked to an average infant mortality increase of nearly 8%. Unusually, the research suggests a causative link between human and bat wellbeing.“That’s just quite rare – to get good, empirical, grounded estimates of how much value the species is providing,” said environmental economist Charles Taylor from the Harvard Kennedy School, who was not involved in the study. “Putting actual numbers to it in a credible way is tough.”The crisis for bat colonies began in 2006, when a fungus called Pseudogymnoascus destructans hitchhiked from Europe to the US. P destructans grows on hibernating bats in winter, sprouting as white fuzz on their noses. It can extinguish a bat colony in as little as five years.When Eyal Frank, an assistant professor at the University of Chicago, learned about the disease, called white-nose syndrome, he realised it provided a perfect natural experiment to demonstrate the value of a bat. Bats eat 40% or more of their bodyweight in insects every night, including many crop pests. What would their disappearance mean?In infected areas, he found, farmers compensated for the loss of bats by significantly increasing their use of insecticides – by 31.1% on average.Next, Frank looked at infant mortality – a metric commonly used to judge the impact of environmental toxins. Infected counties had an infant death rate 7.9% higher, on average, than counties with healthy bats, despite pesticide use being within regulatory limits. That equates to 1,334 extra infant deaths.A brown bat with white-nose syndrome caused by the Pseudogymnoascus destructans fungus in New York. Photograph: Ryan von Linden/APFrank tested other factors that might plausibly explain the rise in deaths: unemployment, the opioid epidemic, the weather, differences among mothers, or the introduction of genetically modified crops, but none explained the increase in pesticide use or the rise in infant deaths. He spent a year “kicking the tyres on the study”, and the results held. It provided “compelling evidence”, he said, “that farmers did respond to the decline in insect-eating bats, and that response had an adverse health impact on human infants”.It is unusual for a study of this type to suggest causation, not just correlation, said Taylor.“A lot of papers that try to link pesticides to outcomes are correlational in nature,” said Taylor. “People who are exposed to more pesticides, for example, might have other risk factors – like, farm workers are exposed to a whole host of other socioeconomic risks that could explain why there might be different health outcomes.”White-nose syndrome, however, essentially creates a randomised controlled trial: because the spread of white-nose syndrome was closely monitored, Frank could compare counties that had lost their bats with those the disease had not yet reached. “The bat disease wasn’t expected, and it shouldn’t have preferentially targeted certain groups over others,” Taylor said.A number of recent studies have shown how collapsing populations of wildlife can have unexpected knock-on effects for people. In June, Frank and another researcher estimated that the collapse of India’s vulture population may have resulted in 500,000 human deaths – because without the scavenging birds to eat rotting meat, rabies and other infections proliferated.The findings on pesticide use also echo previous research, including a study of Taylor’s. In the US, cicadas emerge en masse at intervals of 13 to 17 years. Taylor found that pesticide use increased in cicada seasons, as did infant mortality. People born in cicada years had lower test scores and were more likely to drop out of school.Columbia history professor David Rosner, who has spent his career investigating environmental toxins, said the study joins a body of evidence going back to the 1960s that pesticides adversely affect human health. “We’re dumping these synthetic materials into our environment, not knowing anything about what their impacts are going to be,” he said. “It’s not surprising – it’s just kind of shocking that we discover it every year.”Find more age of extinction coverage here, and follow biodiversity reporters Phoebe Weston and Patrick Greenfield on Twitter for all the latest news and features

Cutbacks to U.S. Antarctic Science Risk Geopolitical Shifts at the South Pole

Reductions to American research at the South Pole could affect the politics of the southernmost continent

Antarctica may be remote, but it hasn’t escaped the scans of Google Street View. If you digitally drop into McMurdo Station, the U.S.’s busiest Antarctic installation, and slide along the volcanic rock of Ross Island, you’ll find muddy, tire-tracked roads. Along their edges are cargo containers marked “USAP,” the U.S. Antarctic Program, run by the National Science Foundation (NSF); you may also see Ivan the Terra Bus, a substantial people mover with burly tires that are nearly six feet tall.But McMurdo—normally a humming hub of research—has gotten quieter. Amid budget concerns and delayed upgrades to the station’s aging infrastructure, the NSF has pulled back on the number of scientific projects and associated people it sends to the globe’s deepest south.As the U.S. presence has decreased, though, other countries have been pouring more resources into the Antarctic. And although it’s not a contest, some experts are sounding alarms about that disparity. Security researchers say that “presence equals influence” in Antarctica, and they’re worried that the U.S. may slip in both categories while setting its scientific work back. Adrop inU.S. influence could affect geopolitics in the region and potentially endanger the safeguards ensuring the peaceful use of the Antarctic.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.Antarctica, as a continent and an idea, isn’t just some icy backwater: it’s an important place environmentally, scientifically and politically. “People just think of Antarctica as really far away and that it doesn’t have any impact on them,” says Deneb Karentz, vice president for science at the Scientific Committee on Antarctic Research (SCAR). The Southern Ocean’s circulation redistributes heat globally, and deep ocean currents also carry nutrients toward the equator. “It’s a really vital part of the whole ocean system and the way that the ocean interacts with the atmosphere,” Karentz says.Antarctica is also a prime place for space research. With its stable atmosphere and lack of electromagnetic interference from civilization, astronomers and physicists can seek faint signals from long-ago, faraway, mysterious parts of the universe—signals that may be hidden from instruments on busier continents. People come from all over the world to study the ice itself, which contains 90 percent of the world’s surface fresh water. And then there’s the geology, the sea life, the extremophiles and the changing climate.Karentz’s organization, SCAR, helps countries share scientific results of all sorts and collaborate on projects. In August the organization will bring the global community together in Chile for the SCAR Open Science Conference—the first in-person meeting since 2018. Carolina Merino, a biologist at the University of La Frontera in Chile, plans to be at the meeting. She’s a member of SCAR and studies how microbes survive Antarctica’s harsh conditions. “Understanding these processes can have significant implications for climate change science and environmental conservation,” she says. At the SCAR meeting, she’s hoping to bolster international collaboration on research.In addition, the group serves as science adviser to the Antarctic Treaty system—a treaty and related documents that govern existence on the continent. SCAR shares expertise about topics such as which areas should be protected or what’s going on with climate change lately.The Antarctic Treaty isn’t complicated. “There are two things in the treaty,” Karentz says: one, Antarctica is to be used only for science, and two, “it has to be peaceful,” she says. Militaries are allowed to provide logistical support; the Department of Defense and the Department of Homeland Security do so for the U.S. The treaty also has an Environmental Protection Protocol that lays out conservation measures and environmental management policies.The treaty was originally signed in 1959 and entered force in 1961, with the conflicted superpowers of the U.S. and the Soviet Union both coming onboard. “They agreed at that time that expanding the cold war into the coldest continent was not a useful activity,” says William Muntean, a senior associate at the Center for Strategic and International Studies.Even with that enforced peace, though, Antarctica is geopolitically important: it contains, for instance, resources such as fisheries, minerals and natural gas that, because of the treaty, no one can exploit. It’s also geopolitically strange. “It’s not divvied up into countries or ownership in the way the rest of the world is,” says Muntean, who served as senior adviser for Antarctica at the U.S. Department of State and, in that role, led the nation’s delegation to Antarctic Treaty meetings. Before the treaty, seven countries had already made claims on the continent, but when they signed the agreement, they barred themselves from legally acting on those claims.That’s a sovereignty situation unlike any other on Earth—and one that many researchers don’t think about when they’re preparing neutrino detectors and ice corers for the South Pole. Few people in the United States focus on the politics of Antarctica, Muntean says. “You could find a lot of scientists who can talk about penguins and ice cubes and all that sort of stuff, but very few talk about the politics of it,” he adds.The science that they do, however, is twined with the politics. Research projects—and infrastructure such as McMurdo or the Amundsen-Scott South Pole Station—exist not just for the sake of knowledge gathering but also for the sake of influence. “If you want to be influential in any capacity—be it diplomatically, economically, militarily, doesn’t matter—you need to be present in a region,” says Ryan Burke, a professor at the U.S. Air Force Academy and the University of Alaska Fairbanks’s Center for Arctic Security and Resilience. That’s especially true in a place where military flexes, traditional ways for nations to establish both presence and influence, are prohibited. Muntean cites China and South Korea as countries that are increasing their Antarctic footprint and therefore their own influence.Burke and Muntean are both concerned that the U.S., meanwhile, has decreased its presence in Antarctica. In 2023 NSF announced that it was canceling more than half of the USAP projects and activities that had been funded for the 2023–2024 research season. In the two summers to follow, the announcement said, the agency would focus on already-funded projects. It did not solicit any new USAP proposals in 2024.Those changes came in part because McMurdo Station needed to be modernized for the 21st century and is in the midst of upgrades.The initial renovation was interrupted by the COVID pandemic, as were Antarctic trips in general. The disease and its disruptions delayed the work—a new dorm, for instance, is off schedule by three years—meaning there aren’t enough beds available for the typical number of scientists who would visit. Plus, as grocery stores on the mainland show, costs of all sorts have increased, meaning a given amount of money results in less renovation.Not taking new proposals in 2024 “allows NSF to focus resources on reducing the lingering backlog of projects affected by the pandemic and major upgrade work at McMurdo Station,” an NSF spokesperson says.The science agency also stated last year that it would only operate one research ship in the coming decades, rather than the two it has in the past, partially because of budgetary concerns. The Coast Guard, meanwhile, is experiencing problems with its Polar Security Cutter program, and acquisitions of new ships are delayed.All of that together, despite the logistical and financial constraints that make it seemingly necessary, has the effect of decreasing American presence in Antarctica and backing up the scientific pipeline. “It is an issue,” Karentz says, “and I think there’s legitimate concern about what it's doing to the future of the U.S. Antarctic Program.”Muntean worries about early-career researchers, whose research path might be more affected by delays due to the Antarctic slowdown and who could also face more competition because of the backup. “Right now it’s a little bit tough, I think, to say South Pole or Antarctic research has got a bright future,” he says.In Muntean’s view, U.S. planners aren’t thinking enough about pipelines in general, such as replacement plans for aging ships and planes that can move in that harsh environment. As with the on-land infrastructure, if you wait until vehicles face obsolescence, you often face a gap in capability. “The icebreaker that is currently operational—Polar Star—is almost as old as I am,” Muntean says, describing the ship that creates a channel through the ice to clear the way to McMurdo Sound. “This is not good for us.”An NSF spokesperson points to President Biden’s May 2024 National Security Memorandum on U.S. Policy on the Antarctic Region, “which reaffirms the importance of the Antarctic Treaty System ... [and] reiterates the long-standing mandate to maintain an ‘active and influential presence.’”But if the U.S. loses influence in Antarctica, there could be negative consequences for the dynamics of the region. “We have a nice, neutral, calming effect, usually, on the politics of Antarctica,” Muntean says.Burke agrees. “The U.S. is largely interested in maintaining the continent as a zone of peace and research,” he says—upholding the original tenets of the treaty, in other words.The current American pullback has led some to worry that, as Muntean put it in a recent commentary, other countries may be more likely to “pursue their individual interests rather than their collective interest.”The collective interest involves those “peace and science” ideals in the treaty, and individual interests perhaps include putting dual-use capabilities at Antarctic installations—instrumentation that’s useful both to scientists and to the military—or looking into using resources that have been set aside for conservation.Worries about countries pursuing individual interests are why treaties have enforcement mechanisms. The Antarctic Treaty has two. Countries can do unannounced inspections of other nations’ stations. “Countries show up and check out what’s happening to see whether countries are doing what they’re saying they’re doing,” Muntean says. Every state present in Antarctica also has to document their planned activities, equipment and in-person presence.A U.S. team slid in just before the pandemic in 2020 to perform recent inspections. It was led by Muntean, and members included officials from the Department of State, the Coast Guard, NSF and the National Oceanic and Atmospheric Administration. “We were welcomed with open arms by all stations,” Muntean says.Over the entire lifetime of the treaty, however, only around 60 inspections have occurred—not exactly enough to keep a sharp eye on the goings-on. And in 2023 just 10 of 29 parties had done their required documentation every year for the past decade.Given all those fuzzy variables, Muntean believes that scientists who study the Antarctic shouldn’t just pay attention to their own projects and care about their own results. They also need to be part of the policy and the politics, especially if they want to ensure they get to continue to do their science at the levels they have in the past. “The U.S. needs to be thinking about how to make the platforms, and maintain the platforms, for decades to come in a manner that keeps us in the forefront of science [and] environmental protection,” Muntean says, “as well as the politics.”

Groundbreaking Antarctic Survey Reveals Hidden Patterns in Ice Shelf Melting

Scientists have used a submersible to map the underside of Antarctica’s Dotson Ice Shelf, revealing rapid melting and unusual patterns that contribute to understanding sea level rise. The research highlights the need for improved predictive models and continued exploration to comprehend future changes in ice shelf dynamics. The first detailed maps of the underside of [...]

A survey using a submersible named ‘Ran’ has mapped the underside of Antarctica’s Dotson Ice Shelf, revealing complex ice melt patterns that suggest faster melting and future sea level rise implications.Scientists have used a submersible to map the underside of Antarctica’s Dotson Ice Shelf, revealing rapid melting and unusual patterns that contribute to understanding sea level rise. The research highlights the need for improved predictive models and continued exploration to comprehend future changes in ice shelf dynamics. The first detailed maps of the underside of a floating ice shelf in Antarctica have unveiled crucial clues about future sea level rise. An international research team – including scientists from the University of East Anglia (UEA) – deployed an unmanned submersible beneath the Dotson Ice Shelf in West Antarctica. The underwater vehicle, ‘Ran’, was programmed to dive into the cavity of the 350-meter-thick ice shelf and scan the ice above it with an advanced sonar. Over 27 days, the submarine traveled more than 1000 kilometers back and forth under the shelf, reaching 17 kilometers into the cavity. Understanding Ice Shelf Dynamics An ice shelf is a mass of glacial ice, fed from land by tributary glaciers, that floats in the sea above an ice shelf cavity. Dotson Ice Shelf is part of the West Antarctic ice sheet – and next to Thwaites Glacier – which is considered to have a potentially large impact on future sea level rise due to its size and location. The researchers report their findings of this unique survey in a new paper published in the journal Science Advances. They found some things as expected, for example, the glacier melts faster where strong underwater currents erode its base. Using the submersible, they were able to measure the currents below the glacier for the first time and prove why the western part of the Dotson Ice Shelf melts so fast. They also found evidence of very high melt at vertical fractures that extend through the glacier. However, the team also saw new patterns on the glacier base that raised questions. The mapping showed that the base is not smooth, but there is a peak and valley ice-scape with plateaus and formations resembling sand dunes. The researchers hypothesize that these may have been formed by flowing water under the influence of Earth’s rotation. Insights from High-Resolution Mapping Lead author Anna Wåhlin, Professor of Oceanography at the University of Gothenburg in Sweden, said: “We have previously used satellite data and ice cores to observe how ice shelves change over time. By navigating the submersible into the cavity, we were able to get high-resolution maps of the ice underside. It’s a bit like seeing the back of the moon for the first time.” The expedition was carried out in regions of drifting ice in West Antarctica in 2022 during a research cruise for the TARSAN project, a joint US-UK funded initiative that is part of the International Thwaites Glacier Collaboration. The project is studying how atmospheric and oceanic processes are influencing the behavior of the Thwaites and Dotson Ice Shelves – neighboring ice shelves that are behaving differently. Co-author Dr Rob Hall, from UEA’s School of Environmental Sciences, co-led the cruise on the RV Nathaniel B Palmer, on which the observations were made from January to March 2022. He said: “Anna and her team successfully piloted their autonomous underwater vehicle ‘Ran’ over 1000 km under Dotson Ice Shelf collecting a huge range of data and samples, which will take several years to process and analyze. “The incredible high-resolution images of the underside of the ice shelf are the icing on the cake and will open up a whole new avenue of scientific research.” The Significance of Melting Ice Shelves Prof Karen Heywood, also from UEA and a co-author, is UK lead scientist on the TARSAN project. She said: “This has been such an exciting project to work on. When Anna sent round the first images of the underside of the Dotson ice shelf we were thrilled – nobody had ever seen this before. But we were also baffled – there were cracks and swirls in the ice that we weren’t expecting. It looked more like art! “We wondered what could be causing these. All of the glaciologists and the oceanographers in the TARSAN project got together to brainstorm ideas. It’s been like detective work – using fundamental ocean physics to test theories against the shape and size of the patterns under the ice. We’ve been able to show for the first time some of the processes that melt the underside of ice shelves. Prof Heywood added: “These ice shelves are already floating on the sea, so their melting doesn’t directly affect sea level. However, ultimately the melting of ice shelves causes the glaciers on land further upstream to flow faster and destabilize, which does lead to sea level rise, so these new observations will help the community of ice modelers to reduce the large uncertainties in future sea levels.” Scientists now realize there is a wealth of processes left to discover in future research missions under the glaciers. “The mapping has given us new data that we need to look at more closely. It is clear that many previous assumptions about the melting of glacier undersides are falling short. Current models cannot explain the complex patterns we see. But with this method, we have a better chance of finding the answers,” said Prof Wåhlin. “Better models are needed to predict how fast the ice shelves will melt in the future. It is exciting when oceanographers and glaciologists work together, combining remote sensing with oceanographic field data. This is needed to understand the glaciological changes taking place – the driving force is in the ocean.” In January 2024, the group returned with Ran to Dotson Ice Shelf to repeat the surveys, hoping to document changes. However, they were only able to complete one dive before Ran disappeared under the ice. “Although we got valuable data back, we did not get all we had hoped for,” said Prof Wåhlin. “These scientific advances were made possible thanks to the unique submersible that Ran was. This research is needed to understand the future of Antarctica’s ice sheet, and we hope to be able to replace Ran and continue this important work.” Reference: “Swirls and scoops: Ice base melt revealed by multibeam imagery of an Antarctic ice shelf” by Anna Wåhlin, Karen E. Alley, Carolyn Begeman, Øyvind Hegrenæs, Xiaohan Yuan, Alastair G. C. Graham, Kelly Hogan, Peter E. D. Davis, Tiago S. Dotto, Clare Eayrs, Robert A. Hall, David M. Holland, Tae Wan Kim, Robert D. Larter, Li Ling, Atsuhiro Muto, Erin C. Pettit, Britney E. Schmidt, Tasha Snow, Filip Stedt, Peter M. Washam, Stina Wahlgren, Christian Wild, Julia Wellner, Yixi Zheng and Karen J. Heywood, 31 July 2024, Science Advances.DOI: 10.1126/sciadv.adn9188

MIT School of Science launches Center for Sustainability Science and Strategy

New center taps Institute-wide expertise to improve understanding of, and responses to, sustainability challenges.

The MIT School of Science is launching a center to advance knowledge and computational capabilities in the field of sustainability science, and support decision-makers in government, industry, and civil society to achieve sustainable development goals. Aligned with the Climate Project at MIT, researchers at the MIT Center for Sustainability Science and Strategy will develop and apply expertise from across the Institute to improve understanding of sustainability challenges, and thereby provide actionable knowledge and insight to inform strategies for improving human well-being for current and future generations.Noelle Selin, professor at MIT’s Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences, will serve as the center’s inaugural faculty director. C. Adam Schlosser and Sergey Paltsev, senior research scientists at MIT, will serve as deputy directors, with Anne Slinn as executive director.Incorporating and succeeding both the Center for Global Change Science and Joint Program on the Science and Policy of Global Change while adding new capabilities, the center aims to produce leading-edge research to help guide societal transitions toward a more sustainable future. Drawing on the long history of MIT’s efforts to address global change and its integrated environmental and human dimensions, the center is well-positioned to lead burgeoning global efforts to advance the field of sustainability science, which seeks to understand nature-society systems in their full complexity. This understanding is designed to be relevant and actionable for decision-makers in government, industry, and civil society in their efforts to develop viable pathways to improve quality of life for multiple stakeholders.“As critical challenges such as climate, health, energy, and food security increasingly affect people’s lives around the world, decision-makers need a better understanding of the earth in its full complexity — and that includes people, technologies, and institutions as well as environmental processes,” says Selin. “Better knowledge of these systems and how they interact can lead to more effective strategies that avoid unintended consequences and ensure an improved quality of life for all.”    Advancing knowledge, computational capability, and decision supportTo produce more precise and comprehensive knowledge of sustainability challenges and guide decision-makers to formulate more effective strategies, the center has set the following goals:Advance fundamental understanding of the complex interconnected physical and socio-economic systems that affect human well-being. As new policies and technologies are developed amid climate and other global changes, they interact with environmental processes and institutions in ways that can alter the earth’s critical life-support systems. Fundamental mechanisms that determine many of these systems’ behaviors, including those related to interacting climate, water, food, and socio-economic systems, remain largely unknown and poorly quantified. Better understanding can help society mitigate the risks of abrupt changes and “tipping points” in these systems.Develop, establish and disseminate new computational tools toward better understanding earth systems, including both environmental and human dimensions. The center’s work will integrate modeling and data analysis across disciplines in an era of increasing volumes of observational data. MIT multi-system models and data products will provide robust information to inform decision-making and shape the next generation of sustainability science and strategy.Produce actionable science that supports equity and justice within and across generations. The center’s research will be designed to inform action associated with measurable outcomes aligned with supporting human well-being across generations. This requires engaging a broad range of stakeholders, including not only nations and companies, but also nongovernmental organizations and communities that take action to promote sustainable development — with special attention to those who have historically borne the brunt of environmental injustice.“The center’s work will advance fundamental understanding in sustainability science, leverage leading-edge computing and data, and promote engagement and impact,” says Selin. “Our researchers will help lead scientists and strategists across the globe who share MIT’s commitment to mobilizing knowledge to inform action toward a more sustainable world.”Building a better world at MITBuilding on existing MIT capabilities in sustainability, science, and strategy, the center aims to: focus research, education, and outreach under a theme that reflects a comprehensive state of the field and international research directions, fostering a dynamic community of students, researchers, and faculty;raise the visibility of sustainability science at MIT, emphasizing links between science and action, in the context of existing Institute goals and other efforts on climate and sustainability, and in a way that reflects the vital contributions of a range of natural and social science disciplines to understanding human-environment systems; andre-emphasize MIT’s long-standing expertise in integrated systems modeling while leveraging the Institute’s concurrent leading-edge strengths in data and computing, establishing leadership that harnesses recent innovations, including those in machine learning and artificial intelligence, toward addressing the science challenges of global change and sustainability.“The Center for Sustainability Science and Strategy will provide the necessary synergy for our MIT researchers to develop, deploy, and scale up serious solutions to climate change and other critical sustainability challenges,” says Nergis Mavalvala the Curtis and Kathleen Marble Professor of Astrophysics and dean of the MIT School of Science. “With Professor Selin at its helm, the center will also ensure that these solutions are created in concert with the people who are directly affected now and in the future.”The center builds on more than three decades of achievements by the Center for Global Change Science and the Joint Program on the Science and Policy of Global Change, both of which were directed or co-directed by professor of atmospheric science Ronald Prinn.

School of Humanities, Arts, and Social Sciences welcomes nine new faculty

New professors join anthropology, economics, history, linguistics, music and theater arts, and philosophy departments, as well as the Program in Science, Technology, and Society.

Dean Agustín Rayo and the School of Humanities, Arts, and Social Sciences recently welcomed nine new professors to the MIT community. They arrive with diverse backgrounds and vast knowledge in their areas of research.Sonya Atalay joins the Anthropology Section as a professor. She is a public anthropologist and archaeologist who studies Indigenous science protocols, practices, and research methods carried out with and for Indigenous communities. Atalay is the director and principal investigator of the Center for Braiding Indigenous Knowledges and Science, a newly established National Science Foundation Science and Technology Center. She has expertise in the Native American Graves Protection and Repatriation Act (NAGPRA) and served two terms on the National NAGPRA Review Committee, first appointed by the Bush administration and then for a second term by the Obama administration. Atalay has produced a series of research-based comics in partnership with Native nations about repatriation of Native American ancestral remains, return of sacred objects and objects of cultural patrimony under NAGPRA law. Atalay earned her PhD in anthropology from the University of California at Berkeley (UC Berkeley).Anna Huang SM ’08 joins the departments of Electrical Engineering and Computer Science (EECS) and Music and Theater Arts as assistant professor. She will help develop graduate programming focused on music technology. Previously, she spent eight years with Magenta at Google Brain and DeepMind, spearheading efforts in generative modeling, reinforcement learning, and human-computer interaction to support human-AI partnerships in music-making. She is the creator of Music Transformer and Coconet (which powered the Bach Google Doodle). She was a judge and organizer for the AI Song Contest. Anna holds a Canada CIFAR AI Chair at Mila, a BM in music composition, a BS in computer science from the University of Southern California, an MS from the MIT Media Lab, and a PhD from Harvard University.Elena Kempf joins the History Section as an assistant professor. She is an historian of modern Europe with special interests in international law and modern Germany in its global context. Her current book project is a legal, political, and cultural history of weapons prohibitions in modern international law from the 1860s to the present. Before joining MIT, Kempf was a postdoc at the Miller Institute for Global Challenges and the Law at UC Berkeley and a lecturer at the Department of History at Stanford University. Elena earned her PhD in history from UC Berkeley.Matthias Michel joins the Department of Linguistics and Philosophy as an assistant professor. Matthias completed his PhD in philosophy in 2019 at Sorbonne Université. Before coming to MIT, he was a Bersoff Faculty Fellow in the Department of Philosophy at New York University. His research is at the intersection between philosophy and cognitive science, and focuses on philosophical issues related to the scientific study of consciousness. His current work addresses questions such as how to distinguish entities with minds from those without, which animals are sentient, and which mental functions can be performed unconsciously.Jacob Moscona PhD ’21 is a new assistant professor in the Department of Economics. His research explores broad questions in economic development, with a focus on the role of innovation, the environment, and political economy. One stream of his research investigates the forces that drive the rate and direction of technological progress, as well as how new technologies shape global productivity differences and adaptation to major threats like climate change. Another stream of his research studies the political economy of economic development, with a focus on how variation in social organization and institutions affects patterns of conflict and cooperation. Prior to joining MIT, he was a Prize Fellow in Economics, History, and Politics at Harvard University. He received his BA from Harvard in 2016 and PhD from MIT in 2021. Outside of MIT, Jacob enjoys playing and performing music.Sendhil Mullainathan joins the departments of EECS and Economics as the Peter de Florez Professor. His research uses machine learning to understand complex problems in human behavior, social policy, and medicine. Previously, Mullainathan spent five years at MIT before joining the faculty at Harvard in 2004, and then the University of Chicago in 2018. He received his BA in computer science, mathematics, and economics from Cornell University and his PhD from Harvard.Elise Newman PhD ’21 is a new assistant professor in the Department of Linguistics and Philosophy. Her forthcoming monograph, “When arguments merge,” studies the ingredients that languages use to construct verb phrases, and examines how those ingredients interact with other linguistic processes such as question formation. By studying these interactions, she forms a hypothesis about how different languages’ verb phrases can be distinct from each other, and what they must have in common, providing insight into this aspect of the human language faculty. In addition to the structural properties of language, Newman also has expertise in semantics (the study of meaning) and first language acquisition. She returns to MIT after a postdoc at the University of Edinburgh, after completing her PhD in linguistics at MIT in 2021.Oliver Rollins joins the Program in Science, Technology, and Society as an assistant professor. He is a qualitative sociologist who explores the sociological dimensions of neuroscientific knowledge and technologies. His work primarily illustrates the way race, racialized discourses, and systemic practices of social difference impact and are shaped by the development and use of neuroscience. His book, “Conviction: The Making and Unmaking of The Violent Brain” (Stanford University Press, 2021), traces the evolution of neuroimaging research on antisocial behavior, stressing the limits of this controversial brain model when dealing with aspects of social inequality. Rollins’s second book project will grapple with the legacies of scientific racism in and through the mind and brain sciences, elucidating how the haunting presence of race endures through modern neuroscientific theories, data, and technologies. Rollins recently received an NSF CAREER Award to investigate the intersections between social justice and science. Through this project, he aims to examine the sociopolitical vulnerabilities, policy possibilities, and anti-racist promises for contemporary (neuro)science.Ishani Saraf joins the Program in Science, Technology, and Society as an assistant professor. She is a sociocultural anthropologist. Her research studies the transformation and trade of discarded machines in translocal spaces in India and the Indian Ocean, where she focuses on questions of postcolonial capitalism, urban belonging, material practices, situated bodies of knowledge, and environmental governance. She received her PhD from the University of California at Davis, and prior to joining MIT, she was a postdoc and lecturer at the University of Virginia.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.