Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

New scientific interventions are here to fight climate change. But they aren't silver bullets

News Feed
Monday, April 22, 2024

TRACY, Calif. —  Behind a chain-link fence in a nondescript corner of San Joaquin County sits one of California’s — and perhaps the world’s — best hopes for combating climate change. Here at the nation’s first commercial direct air capture facility, towering trays of limestone mineral powder are working round-the-clock to remove carbon dioxide from the atmosphere. Robots skitter and whir around the 40-foot tall columns, which are part of a multi-step process that will ultimately convert the CO2 to concrete, rendering the planet-warming compound into nothing more harmful than a stone. “We need to do this all around the world,” said Vikrum Aiyer, head of public policy for Heirloom, the California-based company that owns and operates the facility. The good news, he said, is that “CO2 removed anywhere is CO2 removed everywhere.” Aggressive and impactful reporting on climate change, the environment, health and science. The idea for their carbon-removal technology was born in the wake of a 2018 special report from the Intergovernmental Panel on Climate Change, which found that limiting global warming to 1.5 degrees Celsius over preindustrial levels will require transformative innovations in energy, land, urban and industrial systems that go beyond national pledges to cut back on emissions. The 1.5-degree limit is an internationally-agreed-upon benchmark intended to prevent the worst effects of climate change. But the planet is already beginning to experience the effects of that warming, including worsening wildfires, simmering oceans, extreme heat waves, prolonged droughts, crop shortages and species loss. Last year was the planet’s hottest on record so far, with the global average temperature hovering around 2.67 degrees — or 1.48 degrees Celsius — warmer than the late 1800s. Maurisha Agustin, a production technician, works inside the 40-foot-tall carbon dioxide extractor. (Paul Kuroda / For The Times) While reducing the use of fossil fuels is the surest way to prevent that warming from getting worse, Aiyer and many other experts, researchers and public officials are converging around the notion that scientific intervention will be necessary. “We need to move fast, and we need more lawmakers to not move at the speed and scale of government, but rather at the speed and scale of our children’s generation, and the next generation, depending on it,” he said.The government is getting on board, however — as is Silicon Valley. The Tracy facility is capable of capturing 1,000 tons of CO2 per year, which will be stored for centuries in concrete that is already being used to build bridges, roads and other local infrastructure. The company makes a profit by selling carbon removal credits to buyers such as Microsoft, Stripe and Klarna, which are investing heavily in the technology.But it will take a lot more than 1,000 tons of annual CO2 removal to make a dent in global warming: Current CO2 levels in the atmosphere are 425 parts per million and counting. To truly make a difference will require carbon removal at the gigaton scale, or billions of tons each year, according to the IPCC. Trays layered with calcium hydroxide are designed to extract carbon dioxide from the atmosphere. (Paul Kuroda / For The Times) Christian Theuer, Heirloom’s policy communications manager, explains how carbon dioxide extraction works. (Paul Kuroda / For The Times) Earlier this year, the U.S. Department of Energy awarded $50 million to Heirloom and its partners to develop what will become a massive, million-ton direct air capture facility in Louisiana. The funding was part of a larger $1.2-billion investment into direct air capture technologies announced by the Biden administration last year. Several Los Angeles startups are also getting into the carbon removal game, including Captura, a company working to remove CO2 from the upper ocean, and Avnos, a company whose technology produces water while capturing carbon. Avnos also recently secured funding from the Department of Energy. The hope is that operating such projects around the country and the world will not only stop global warming, but eventually help reverse it, said Christian Theuer, Heirloom’s policy communications manager.“You halt it by getting to net zero, by not putting out any new CO2 emissions into the atmosphere,” Theuer said as he circled the towers in Tracy. “Then you can move into the negative emissions territory, where you’re cleaning up legacy pollution that is already warming the planet.”But direct air capture is only one of the many ways scientists, policymakers and researchers are hoping to alter the planet’s worrisome trajectory. Solar radiation modification — a form of geoengineering designed to artificially cool the planet — is also being seriously studied as a solution.There are many forms of solar radiation modification, including a concept known as marine cloud brightening, which uses sea salt particles to increase the reflectivity of clouds in order to reflect more sunlight away from Earth. A program run by the University of Washington recently initiated a test of the concept off the coast of San Francisco.But perhaps the most promising — or at least the most studied — geoengineering solution is known as stratospheric aerosol injections. Proposed methods for climate intervention include stratospheric aerosol injections and marine cloud brightening. (National Oceanic and Atmospheric Administration) The basic idea is to manually re-create the process of volcanic eruptions, which cool the planet by spewing sulfur and other particles into the stratosphere, temporarily blocking sunlight. Researchers already know from studying volcanoes that this infusion of sulfur creates a planetary cooling effect that can last two or three years. That and other forms of solar radiation modification are gaining so much attention that last year, the White House released a congressional report on the matter that not only considers its feasibility, but also outlines the urgent need for a framework to govern its research. Solar radiation modification “offers the possibility of cooling the planet significantly on a timescale of a few years,” the report says. “Such cooling would tend to reverse many of the negative consequences of climate change, albeit with ramifications which are now poorly understood.”Indeed, such a concept carries many potential benefits as well as potential risks, according to Chris Field, director of the Woods Institute for the Environment at Stanford University. Field led a major National Academies of Sciences report on solar geoengineering that is reflected in the White House’s findings. Towering structures of fans and trays capture carbon dioxide inside the Heirloom plant in Tracy. (Paul Kuroda / For The Times) “We have a pretty solid understanding that injecting aerosols in the stratosphere would make the average temperature cooler, but you would want to do a lot more than that if you were serious about a deployment of this stuff,” Field said. “You would want to know about the regional effects and you would want to know about the possibility of any unintended consequences outside the climate system. You’d also want to know a lot about what kinds of strategies you would have in place to make this governable.”Last year, a company called Make Sunsets made headlines when it began testing stratospheric aerosol injections by releasing sulfur-filled weather balloons from a launch site in Mexico. The move generated considerable opposition from the scientific community, which said it was too soon to conduct such experiments without more guardrails. An open letter signed by more than 110 physical and biological scientists in the wake of the incident affirmed “the importance of proceeding with responsible research.”Part of the reason for concern is that when sulfur dioxide leaves the stratosphere and sinks into the lower atmosphere, it can potentially fall as acid rain. That doesn’t mean the concept isn’t worth studying, but it does mean transparency about funding, research and results must be made available for broad discussion, Field said. Maurisha Agustin monitors a laptop inside the Heirloom plant. (Paul Kuroda / For The Times) “If it doesn’t have a certain level of public trust — especially in the world’s developing countries — there is essentially no way that it could be deployed and sustained over an extended period,” he said. He added that it is not really possible to design a stratospheric deployment that is limited to one part of the world’s geography, meaning that any injections would have global implications. Critically, Field and other experts said geoengineering should not take the place of decarbonization, or efforts to reduce or eliminate CO2 emissions around the world. California has committed to reaching carbon neutrality by 2045.“There’s no world in which solar geoengineering is a solution to climate change — it’s kind of a Band-Aid so that we don’t experience the full range of impacts of the climate change that’s still there,” Field said. “And it’s really important to recognize that, because it’s just a Band-Aid, we really don’t want it to take attention away from decarbonization.”While direct air capture and aerosol injections do show potential, there are other concepts for cooling the planet that have garnered some interest — or at least raised some eyebrows.A Southern California-based organization called the Planetary Sunshade Foundation has posited that the best solution to climate change isn’t here on Earth, but rather in outer space, where a massive sail-like structure could reflect sunlight away from the planet.“We are on track to continue to see significant increases in global temperature, and so solar radiation modification will continue to be talked about more and more,” said Morgan Goodwin, the foundation’s executive director. “And the planetary sunshade, we believe, is the sustainable, long-term way of doing solar radiation modification.” The sail — or more likely, the collection of sails — would need to measure approximately 580,000 square miles in size to offset 1 degree Celsius of warming, Goodwin said. It would need to be located at the Lagrange 1 Point in space, nearly 1 million miles from Earth — a location where the gravitational pull of the sun and Earth would essentially pin the object in place.The design requirement calls for a material that is thin, light and capable of blocking sunlight. Basically “aluminum foil,” Goodwin said. Offsetting 1 degree Celsius of global warming would require approximately 580,000 square miles of sunshade material nearly 1 million miles from Earth. (Planetary Sunshade Foundation) The result would be shading that is diffuse and spread out evenly across the entire globe. The amount of solar shading — about 1% — would be less than what most people can perceive on Earth, and its effect would be less than what some high-altitude clouds already have on sunlight, he said. The concept is similar to a solar sail spacecraft, forms of which have already been deployed in space. A proposed NASA solar cruiser mission would fly a large solar sail to the Lagrange 1 Point, though the project has stalled due to lack of funding. Goodwin said the Sunshade Foundation is advocating for that mission to fly, and for the U.S. government and other agencies to consider their technological proposals.“There’s so much energy and so many resources in the space sector, and part of what we’re saying is that the space sector can play a role as part of the climate solution,” he said. But like other climate adaptation solutions, there are potential downsides. For one, such a project would be large and expensive, and would require constant upkeep and maintenance when meteorites and space debris impact the sails. What’s more, there are unknown unknowns, such as whether even a small percentage of sunlight reduction could affect photosynthesis and have an adverse impact on agricultural crops. But the idea is more “sustainable and responsible” than other forms of solar radiation modification, Goodwin said, although he stressed that it, too, should not take the place of emissions-reduction efforts.“I feel much more hopeful about the future knowing that I can help advance this and help make this a reality, and give us all a much better shot,” he said. “You know, the future is far from certain, and it will be far stranger than we imagined.” Newsletter Toward a more sustainable California Get Boiling Point, our newsletter exploring climate change, energy and the environment, and become part of the conversation — and the solution. You may occasionally receive promotional content from the Los Angeles Times. Back on Earth, the limestone towers are already up and running in Heirloom’s 50,000 square-foot direct air capture facility in Tracy. The process there involves heating limestone in a massive kiln, which turns it into a mineral powder that is spread onto the towering stacks of trays. The powder acts like a sponge for CO2 — pulling it from the air and hardening into a crust. Once saturated, it is returned to the kiln where the CO2 is extracted, and the cycle begins again. The extracted CO2 is transported off site where Heirloom’s partner, CarbonCure Technologies, injects it into recycled water that is used to make concrete that is now being used throughout Bay Area infrastructure. “Once it’s in that concrete, it’s not going back into the atmosphere,” Theuer said of the CO2. “It’s permanently a part of that product. Even if in some scenario you blew up the building associated with it, it would still stay embedded amid the rubble and wouldn’t reenter the atmosphere. It’s now a stone.” The process is different than carbon capture, which involves capturing CO2 at the source where it is emitted. Carbon capture plays a role in the state’s cap-and-trade program, which sets limits on greenhouse gas emissions and allows companies to buy and sell their unused credits. That program has seen mixed results, with some critics saying it ultimately enables more pollution and creates more allowances for emissions. As a commercial operation, Heirloom sells its carbon offsets to a voluntary market at a rate of $600 to $1,000 per net ton, and the company says it does not take investments from oil and gas businesses. Already, some fossil fuel companies have shown interest in direct air capture technology, including at least seven oil and gas producers that have invested in, or are working to develop, direct air capture projects. Aiyer said he is closely watching Senate Bill 308, new legislation in California that would create a framework by which the state government approves standards for carbon removal. It would also compel heavy emitters in the state to account for their emissions through offset purchases or removals, among other measures. But there are potential downsides to direct air capture, including its high energy costs, which could limit the technology’s ability to expand. The Heirloom facility and many others run on 100% renewable energy, including wind and solar power, but experts say fusion and geothermal energy could be potential sources for such technology in the future. And while concrete storage is currently the best available option for carbon sequestration in the U.S., cement is a known contributor to fossil fuel emissions. Heirloom officials said they anticipate transitioning to underground storage wells in the future, pending permitting approval from the Environmental Protection Agency. Geologic storage is already used in parts of Europe, and there are at least 506 billion tons of accessible pore space for permanent CO2 storage in the U.S., they said. What’s more, the interest from Big Oil has met with broader concerns that carbon removal, geoengineering and other climate change solutions could have the unintended consequence of enabling society to continue its reliance on fossil fuels. If these tools can clean CO2 or cool the planet, the logic goes, then the use of gas-guzzling cars, smog-producing products, and oil and gas drilling can continue as usual.It’s a refrain many working in the climate adaptation space have heard before. Still, the steady hum of progress has given even those most entrenched in the battle against global warming some semblance of optimism for the future. “These technologies — whether it is our pathway of direct air capture or other carbon removal technologies — should not be a fig leaf for additional fossil fuel expansion,” Aiyer said. “We need to make sure that we are reducing our reliance on emissions and fossil fuel production, and we need to do these removals.”

Giant sun shades, 40-foot-tall air filters, stratospheric sulfur injections: Here are some of the wild and wondrous ways we might save the planet.

TRACY, Calif. — 

Behind a chain-link fence in a nondescript corner of San Joaquin County sits one of California’s — and perhaps the world’s — best hopes for combating climate change.

Here at the nation’s first commercial direct air capture facility, towering trays of limestone mineral powder are working round-the-clock to remove carbon dioxide from the atmosphere. Robots skitter and whir around the 40-foot tall columns, which are part of a multi-step process that will ultimately convert the CO2 to concrete, rendering the planet-warming compound into nothing more harmful than a stone.

“We need to do this all around the world,” said Vikrum Aiyer, head of public policy for Heirloom, the California-based company that owns and operates the facility. The good news, he said, is that “CO2 removed anywhere is CO2 removed everywhere.”

Aggressive and impactful reporting on climate change, the environment, health and science.

The idea for their carbon-removal technology was born in the wake of a 2018 special report from the Intergovernmental Panel on Climate Change, which found that limiting global warming to 1.5 degrees Celsius over preindustrial levels will require transformative innovations in energy, land, urban and industrial systems that go beyond national pledges to cut back on emissions.

The 1.5-degree limit is an internationally-agreed-upon benchmark intended to prevent the worst effects of climate change. But the planet is already beginning to experience the effects of that warming, including worsening wildfires, simmering oceans, extreme heat waves, prolonged droughts, crop shortages and species loss. Last year was the planet’s hottest on record so far, with the global average temperature hovering around 2.67 degrees — or 1.48 degrees Celsius — warmer than the late 1800s.

A production technician inside a towering structure with fans

Maurisha Agustin, a production technician, works inside the 40-foot-tall carbon dioxide extractor.

(Paul Kuroda / For The Times)

While reducing the use of fossil fuels is the surest way to prevent that warming from getting worse, Aiyer and many other experts, researchers and public officials are converging around the notion that scientific intervention will be necessary.

“We need to move fast, and we need more lawmakers to not move at the speed and scale of government, but rather at the speed and scale of our children’s generation, and the next generation, depending on it,” he said.

The government is getting on board, however — as is Silicon Valley. The Tracy facility is capable of capturing 1,000 tons of CO2 per year, which will be stored for centuries in concrete that is already being used to build bridges, roads and other local infrastructure. The company makes a profit by selling carbon removal credits to buyers such as Microsoft, Stripe and Klarna, which are investing heavily in the technology.

But it will take a lot more than 1,000 tons of annual CO2 removal to make a dent in global warming: Current CO2 levels in the atmosphere are 425 parts per million and counting. To truly make a difference will require carbon removal at the gigaton scale, or billions of tons each year, according to the IPCC.

Trays layered with calcium hydroxide are designed to extract carbon dioxide from the atmosphere.

Trays layered with calcium hydroxide are designed to extract carbon dioxide from the atmosphere.

(Paul Kuroda / For The Times)

A man in a black jacket and blue hard hat stands beside a bank of trays

Christian Theuer, Heirloom’s policy communications manager, explains how carbon dioxide extraction works.

(Paul Kuroda / For The Times)

Earlier this year, the U.S. Department of Energy awarded $50 million to Heirloom and its partners to develop what will become a massive, million-ton direct air capture facility in Louisiana. The funding was part of a larger $1.2-billion investment into direct air capture technologies announced by the Biden administration last year.

Several Los Angeles startups are also getting into the carbon removal game, including Captura, a company working to remove CO2 from the upper ocean, and Avnos, a company whose technology produces water while capturing carbon. Avnos also recently secured funding from the Department of Energy.

The hope is that operating such projects around the country and the world will not only stop global warming, but eventually help reverse it, said Christian Theuer, Heirloom’s policy communications manager.

“You halt it by getting to net zero, by not putting out any new CO2 emissions into the atmosphere,” Theuer said as he circled the towers in Tracy. “Then you can move into the negative emissions territory, where you’re cleaning up legacy pollution that is already warming the planet.”

But direct air capture is only one of the many ways scientists, policymakers and researchers are hoping to alter the planet’s worrisome trajectory. Solar radiation modification — a form of geoengineering designed to artificially cool the planet — is also being seriously studied as a solution.

There are many forms of solar radiation modification, including a concept known as marine cloud brightening, which uses sea salt particles to increase the reflectivity of clouds in order to reflect more sunlight away from Earth. A program run by the University of Washington recently initiated a test of the concept off the coast of San Francisco.

But perhaps the most promising — or at least the most studied — geoengineering solution is known as stratospheric aerosol injections.

Graphic showing proposed methods for climate intervention, including modifying incoming or outgoing solar radiation

Proposed methods for climate intervention include stratospheric aerosol injections and marine cloud brightening.

(National Oceanic and Atmospheric Administration)

The basic idea is to manually re-create the process of volcanic eruptions, which cool the planet by spewing sulfur and other particles into the stratosphere, temporarily blocking sunlight. Researchers already know from studying volcanoes that this infusion of sulfur creates a planetary cooling effect that can last two or three years.

That and other forms of solar radiation modification are gaining so much attention that last year, the White House released a congressional report on the matter that not only considers its feasibility, but also outlines the urgent need for a framework to govern its research.

Solar radiation modification “offers the possibility of cooling the planet significantly on a timescale of a few years,” the report says. “Such cooling would tend to reverse many of the negative consequences of climate change, albeit with ramifications which are now poorly understood.”

Indeed, such a concept carries many potential benefits as well as potential risks, according to Chris Field, director of the Woods Institute for the Environment at Stanford University. Field led a major National Academies of Sciences report on solar geoengineering that is reflected in the White House’s findings.

Towering structures of fans and trays that capture carbon dioxide

Towering structures of fans and trays capture carbon dioxide inside the Heirloom plant in Tracy.

(Paul Kuroda / For The Times)

“We have a pretty solid understanding that injecting aerosols in the stratosphere would make the average temperature cooler, but you would want to do a lot more than that if you were serious about a deployment of this stuff,” Field said. “You would want to know about the regional effects and you would want to know about the possibility of any unintended consequences outside the climate system. You’d also want to know a lot about what kinds of strategies you would have in place to make this governable.”

Last year, a company called Make Sunsets made headlines when it began testing stratospheric aerosol injections by releasing sulfur-filled weather balloons from a launch site in Mexico. The move generated considerable opposition from the scientific community, which said it was too soon to conduct such experiments without more guardrails. An open letter signed by more than 110 physical and biological scientists in the wake of the incident affirmed “the importance of proceeding with responsible research.”

Part of the reason for concern is that when sulfur dioxide leaves the stratosphere and sinks into the lower atmosphere, it can potentially fall as acid rain. That doesn’t mean the concept isn’t worth studying, but it does mean transparency about funding, research and results must be made available for broad discussion, Field said.

An Heirloom worker monitors a laptop

Maurisha Agustin monitors a laptop inside the Heirloom plant.

(Paul Kuroda / For The Times)

“If it doesn’t have a certain level of public trust — especially in the world’s developing countries — there is essentially no way that it could be deployed and sustained over an extended period,” he said. He added that it is not really possible to design a stratospheric deployment that is limited to one part of the world’s geography, meaning that any injections would have global implications.

Critically, Field and other experts said geoengineering should not take the place of decarbonization, or efforts to reduce or eliminate CO2 emissions around the world. California has committed to reaching carbon neutrality by 2045.

“There’s no world in which solar geoengineering is a solution to climate change — it’s kind of a Band-Aid so that we don’t experience the full range of impacts of the climate change that’s still there,” Field said. “And it’s really important to recognize that, because it’s just a Band-Aid, we really don’t want it to take attention away from decarbonization.”

While direct air capture and aerosol injections do show potential, there are other concepts for cooling the planet that have garnered some interest — or at least raised some eyebrows.

A Southern California-based organization called the Planetary Sunshade Foundation has posited that the best solution to climate change isn’t here on Earth, but rather in outer space, where a massive sail-like structure could reflect sunlight away from the planet.

“We are on track to continue to see significant increases in global temperature, and so solar radiation modification will continue to be talked about more and more,” said Morgan Goodwin, the foundation’s executive director. “And the planetary sunshade, we believe, is the sustainable, long-term way of doing solar radiation modification.”

The sail — or more likely, the collection of sails — would need to measure approximately 580,000 square miles in size to offset 1 degree Celsius of warming, Goodwin said. It would need to be located at the Lagrange 1 Point in space, nearly 1 million miles from Earth — a location where the gravitational pull of the sun and Earth would essentially pin the object in place.

The design requirement calls for a material that is thin, light and capable of blocking sunlight. Basically “aluminum foil,” Goodwin said.

An illustration of the sun's rays being deflected by a giant sunshade

Offsetting 1 degree Celsius of global warming would require approximately 580,000 square miles of sunshade material nearly 1 million miles from Earth.

(Planetary Sunshade Foundation)

The result would be shading that is diffuse and spread out evenly across the entire globe. The amount of solar shading — about 1% — would be less than what most people can perceive on Earth, and its effect would be less than what some high-altitude clouds already have on sunlight, he said.

The concept is similar to a solar sail spacecraft, forms of which have already been deployed in space. A proposed NASA solar cruiser mission would fly a large solar sail to the Lagrange 1 Point, though the project has stalled due to lack of funding. Goodwin said the Sunshade Foundation is advocating for that mission to fly, and for the U.S. government and other agencies to consider their technological proposals.

“There’s so much energy and so many resources in the space sector, and part of what we’re saying is that the space sector can play a role as part of the climate solution,” he said.

But like other climate adaptation solutions, there are potential downsides. For one, such a project would be large and expensive, and would require constant upkeep and maintenance when meteorites and space debris impact the sails. What’s more, there are unknown unknowns, such as whether even a small percentage of sunlight reduction could affect photosynthesis and have an adverse impact on agricultural crops.

But the idea is more “sustainable and responsible” than other forms of solar radiation modification, Goodwin said, although he stressed that it, too, should not take the place of emissions-reduction efforts.

“I feel much more hopeful about the future knowing that I can help advance this and help make this a reality, and give us all a much better shot,” he said. “You know, the future is far from certain, and it will be far stranger than we imagined.”

Newsletter

Toward a more sustainable California

Get Boiling Point, our newsletter exploring climate change, energy and the environment, and become part of the conversation — and the solution.

You may occasionally receive promotional content from the Los Angeles Times.

Back on Earth, the limestone towers are already up and running in Heirloom’s 50,000 square-foot direct air capture facility in Tracy.

The process there involves heating limestone in a massive kiln, which turns it into a mineral powder that is spread onto the towering stacks of trays. The powder acts like a sponge for CO2 — pulling it from the air and hardening into a crust. Once saturated, it is returned to the kiln where the CO2 is extracted, and the cycle begins again.

The extracted CO2 is transported off site where Heirloom’s partner, CarbonCure Technologies, injects it into recycled water that is used to make concrete that is now being used throughout Bay Area infrastructure.

“Once it’s in that concrete, it’s not going back into the atmosphere,” Theuer said of the CO2. “It’s permanently a part of that product. Even if in some scenario you blew up the building associated with it, it would still stay embedded amid the rubble and wouldn’t reenter the atmosphere. It’s now a stone.”

The process is different than carbon capture, which involves capturing CO2 at the source where it is emitted. Carbon capture plays a role in the state’s cap-and-trade program, which sets limits on greenhouse gas emissions and allows companies to buy and sell their unused credits. That program has seen mixed results, with some critics saying it ultimately enables more pollution and creates more allowances for emissions.

As a commercial operation, Heirloom sells its carbon offsets to a voluntary market at a rate of $600 to $1,000 per net ton, and the company says it does not take investments from oil and gas businesses. Already, some fossil fuel companies have shown interest in direct air capture technology, including at least seven oil and gas producers that have invested in, or are working to develop, direct air capture projects.

Aiyer said he is closely watching Senate Bill 308, new legislation in California that would create a framework by which the state government approves standards for carbon removal. It would also compel heavy emitters in the state to account for their emissions through offset purchases or removals, among other measures.

But there are potential downsides to direct air capture, including its high energy costs, which could limit the technology’s ability to expand. The Heirloom facility and many others run on 100% renewable energy, including wind and solar power, but experts say fusion and geothermal energy could be potential sources for such technology in the future.

And while concrete storage is currently the best available option for carbon sequestration in the U.S., cement is a known contributor to fossil fuel emissions. Heirloom officials said they anticipate transitioning to underground storage wells in the future, pending permitting approval from the Environmental Protection Agency. Geologic storage is already used in parts of Europe, and there are at least 506 billion tons of accessible pore space for permanent CO2 storage in the U.S., they said.

What’s more, the interest from Big Oil has met with broader concerns that carbon removal, geoengineering and other climate change solutions could have the unintended consequence of enabling society to continue its reliance on fossil fuels. If these tools can clean CO2 or cool the planet, the logic goes, then the use of gas-guzzling cars, smog-producing products, and oil and gas drilling can continue as usual.

It’s a refrain many working in the climate adaptation space have heard before. Still, the steady hum of progress has given even those most entrenched in the battle against global warming some semblance of optimism for the future.

“These technologies — whether it is our pathway of direct air capture or other carbon removal technologies — should not be a fig leaf for additional fossil fuel expansion,” Aiyer said. “We need to make sure that we are reducing our reliance on emissions and fossil fuel production, and we need to do these removals.”

Read the full story here.
Photos courtesy of

For plants, urban heat islands don’t mimic global warming

Scientists have found that trees in cities respond to higher temperatures differently than those in forests, potentially masking climate impacts.

It’s tricky to predict precisely what the impacts of climate change will be, given the many variables involved. To predict the impacts of a warmer world on plant life, some researchers look at urban “heat islands,” where, because of the effects of urban structures, temperatures consistently run a few degrees higher than those of the surrounding rural areas. This enables side-by-side comparisons of plant responses.But a new study by researchers at MIT and Harvard University has found that, at least for forests, urban heat islands are a poor proxy for global warming, and this may have led researchers to underestimate the impacts of warming in some cases. The discrepancy, they found, has a lot to do with the limited genetic diversity of urban tree species.The findings appear in the journal PNAS, in a paper by MIT postdoc Meghan Blumstein, professor of civil and environmental engineering David Des Marais, and four others.“The appeal of these urban temperature gradients is, well, it’s already there,” says Des Marais. “We can’t look into the future, so why don’t we look across space, comparing rural and urban areas?” Because such data is easily obtainable, methods comparing the growth of plants in cities with similar plants outside them have been widely used, he says, and have been quite useful. Researchers did recognize some shortcomings to this approach, including significant differences in availability of some nutrients such as nitrogen. Still, “a lot of ecologists recognized that they weren’t perfect, but it was what we had,” he says.Most of the research by Des Marais’ group is lab-based, under conditions tightly controlled for temperature, humidity, and carbon dioxide concentration. While there are a handful of experimental sites where conditions are modified out in the field, for example using heaters around one or a few trees, “those are super small-scale,” he says. “When you’re looking at these longer-term trends that are occurring over space that’s quite a bit larger than you could reasonably manipulate, an important question is, how do you control the variables?”Temperature gradients have offered one approach to this problem, but Des Marais and his students have also been focusing on the genetics of the tree species involved, comparing those sampled in cities to the same species sampled in a natural forest nearby. And it turned out there were differences, even between trees that appeared similar.“So, lo and behold, you think you’re only letting one variable change in your model, which is the temperature difference from an urban to a rural setting,” he says, “but in fact, it looks like there was also a genotypic diversity that was not being accounted for.”The genetic differences meant that the plants being studied were not representative of those in the natural environment, and the researchers found that the difference was actually masking the impact of warming. The urban trees, they found, were less affected than their natural counterparts in terms of when the plants’ leaves grew and unfurled, or “leafed out,” in the spring.The project began during the pandemic lockdown, when Blumstein was a graduate student. She had a grant to study red oak genotypes across New England, but was unable to travel because of lockdowns. So, she concentrated on trees that were within reach in Cambridge, Massachusetts. She then collaborated with people doing research at the Harvard Forest, a research forest in rural central Massachusetts. They collected three years of data from both locations, including the temperature profiles, the leafing-out timing, and the genetic profiles of the trees. Though the study was looking at red oaks specifically, the researchers say the findings are likely to apply to trees broadly.At the time, researchers had just sequenced the oak tree genome, and that allowed Blumstein and her colleagues to look for subtle differences among the red oaks in the two locations. The differences they found showed that the urban trees were more resistant to the effects of warmer temperatures than were those in the natural environment.“Initially, we saw these results and we were sort of like, oh, this is a bad thing,” Des Marais says. “Ecologists are getting this heat island effect wrong, which is true.” Fortunately, this can be easily corrected by factoring in genomic data. “It’s not that much more work, because sequencing genomes is so cheap and so straightforward. Now, if someone wants to look at an urban-rural gradient and make these kinds of predictions, well, that’s fine. You just have to add some information about the genomes.”It's not surprising that this genetic variation exists, he says, since growers have learned by trial and error over the decades which varieties of trees tend to thrive in the difficult urban environment, with typically poor soil, poor drainage, and pollution. “As a result, there’s just not much genetic diversity in our trees within cities.”The implications could be significant, Des Marais says. When the Intergovernmental Panel on Climate Change (IPCC) releases its regular reports on the status of the climate, “one of the tools the IPCC has to predict future responses to climate change with respect to temperature are these urban-to-rural gradients.” He hopes that these new findings will be incorporated into their next report, which is just being drafted. “If these results are generally true beyond red oaks, this suggests that the urban heat island approach to studying plant response to temperature is underpredicting how strong that response is.”The research team included Sophie Webster, Robin Hopkins, and David Basler from Harvard University and Jie Yun from MIT. The work was supported by the National Science Foundation, the Bullard Fellowship at the Harvard Forest, and MIT.

Brisbane 2032 is no longer legally bound to be ‘climate positive’. Will it still leave a green legacy?

Brisbane 2032 was supposed to be the first ‘climate-positive’ Olympic Games. But a quiet change to the host contract puts the commitment in doubt.

When Brisbane was awarded the 2032 Olympic and Paralympic Games, it came with a widely publicised landmark promise: the world’s first “climate-positive” games. The International Olympic Committee had already announced all games would be climate-positive from 2030. It said this meant the games would be required to “go beyond” the previous obligation of reducing carbon emissions directly related to their operations and offsetting or otherwise “compensating” for the rest. In other words, achieving net-zero was no longer sufficient. Now each organising committee would be legally required to remove more carbon from the atmosphere than the games emit. This is in keeping with the most widely cited definition of climate-positive. Both Paris 2024 and Los Angeles 2028 made voluntary pledges. But Brisbane 2032 was the first contractually required to be climate-positive. This was enshrined in the original 2021 Olympic Host Contract, an agreement between the IOC, the State of Queensland, Brisbane City Council and the Australian Olympic Committee. But the host contract has quietly changed since. All references to “climate-positive” have been replaced with weaker terminology. The move was not publicly announced. This fits a broader pattern of Olympic Games promising big on sustainability before weakening or abandoning commitments over time. A quiet retreat from climate positive Research by my team has shown the climate-positive announcement sparked great hope for the future of Brisbane as a regenerative city. We saw Brisbane 2032 as a once-in-a-lifetime opportunity to radically shift away from the ongoing systemic issues underlying urban development. This vision to embrace genuinely sustainable city design centred on fostering circular economies and net positive development. It would have aligned urban development with ecological stewardship. Beyond just mitigating environmental harm, the games could have set a new standard for sustainability by becoming a catalyst to actively regenerate the natural environment. Yet, on December 7 2023, the International Olympic Committee (IOC) initiated an addendum to the host contract. It effectively downgraded the games’ sustainability obligations. It was signed by Brisbane City Council, the State of Queensland, the Australian Olympic Committee and the IOC between April and May 2024. The commitment for the 2032 Brisbane Games to be climate positive has been removed from the Olympic Host Contract. International Olympic Committee Asked about these amendments, the IOC replied it “took the decision to no longer use the term ‘climate-positive’ when referring to its climate commitments”. But the IOC maintains that: “The requirements underpinning this term, however, and our ambition to address the climate crisis, have not changed”. It said the terminology was changed to ensure that communications “are transparent and easily understood; that they focus on the actions implemented to reduce carbon emissions; and that they are aligned with best practice and current regulations, as well as the principle of continual improvement”. Similarly, a Brisbane 2032 spokesperson told The Conversation the language was changed: to ensure we are communicating in a transparent and easily understood manner, following advice from the International Olympic Committee and recommendations of the United Nations and European Union Green Claims Directive, made in 2023. Brisbane 2032 will continue to plan, as we always have, to deliver a Games that focus on specific measures to deliver a more sustainable Games. But the new wording commits Brisbane 2032 to merely “aiming at removing more carbon from the atmosphere than what the Games project emits”. Crucially, this is no longer binding. The new language makes carbon removal an optional goal rather than a contractual requirement. A stadium in Victoria Park violates the 2032 Olympic Host Contract location requirements. Save Victoria Park, CC BY Aiming high, yet falling short Olympic Games have adopted increasingly ambitious sustainability rhetoric. Yet, action in the real world typically falls short. In our ongoing research with the Politecnico di Torino, Italy, we analysed sustainability commitments since the 2006 Winter Olympics in Turin. We found they often change over time. Initial promises are either watered down or abandoned altogether due to political, financial, and logistical pressures. Construction activities for the Winter Olympic Games 2014 in Sochi, Russia, irreversibly damaged the Western Caucasus – a UNESCO World Heritage Site. Rio 2016 failed to clean up Guanabara Bay, despite its original pledge to reduce pollutants by 80%. Rio also caused large-scale deforestation and wetland destruction. Ancient forests were cleared for PyeongChang 2018 ski slopes. Our research found a persistent gap between sustainability rhetoric and reality. Brisbane 2032 fits this pattern as the original promise of hosting climate-positive games is at risk of reverting to business as usual. Victoria Park controversy In 2021, a KPMG report for the Queensland government analysed the potential economic, social and environmental benefits of the Brisbane 2032 games. It said the government was proposing to deliver the climate-positive commitment required to host the 2032 games through a range of initiatives. This included “repurposing and upgrading existing infrastructure with enhanced green star credentials”. But plans for the Olympic stadium have changed a great deal since then. Plans to upgrade the Brisbane Cricket Ground, commonly known as the Gabba, have been replaced by a new stadium to be built in Victoria Park. Victoria Park is Brisbane’s largest remaining inner-city green space. It is known to Indigenous peoples as Barrambin (the windy place). It is listed on the Queensland Heritage Register due to its great cultural significance. Page 90 of the Olympic Host Contract prohibits permanent construction “in statutory nature areas, cultural protected areas and World Heritage sites”. Local community groups and environmental advocates have vowed to fight plans for a Victoria Park stadium. This may include a legal challenge. The area of Victoria Park (64 hectares) compared with Central Park (341h), Regent’s Park (160h), Bois de Vicennes (995h). Save Victoria Park What next? The climate-positive commitment has been downgraded to an unenforceable aspiration. A new Olympic stadium has been announced in direct violation of the host contract. Will Brisbane 2032 still leave a green legacy? Greater transparency and public accountability are needed. Otherwise, the original plan may fall short of the positive legacy it aspired to, before the Olympics even begin. Marcus Foth receives funding from the Australian Research Council. He is a Senior Associate with Outside Opinion, a team of experienced academic and research consultants. He is chair of the Principal Body Corporate for the Kelvin Grove Urban Village, chair of Brisbane Flight Path Community Alliance, and a member of the Queensland Greens.

Has the UK's most loathed protest group really stopped throwing soup?

Just Stop Oil says it will disband but does this mark an end to the chaos caused by its climate protests?

Has the UK's most loathed protest group really stopped throwing soup?Justin RowlattBBC News Climate EditorJSO HandoutThe climate action group Just Stop Oil has announced it is to disband at the end of April. Its activists have been derided as attention-seeking zealots and vandals and it is loathed by many for its disruptive direct action tactics. It says it has won because its demand that there should be no new oil and gas licences is now government policy. So, did they really win and does this mark an end to the chaos caused by its climate protests?Hayley Walsh's heart was racing as she sat in the audience at the Theatre Royal Drury Lane on 27 January this year. The 42 year-old lecturer and mother of three tried to calm her breathing. Hollywood star Sigourney Weaver was onstage in her West End debut production of Shakespeare's The Tempest. But Hayley, a Just Stop Oil activist, had her own drama planned.As Weaver's Prospero declaimed "Come forth, I say," Hayley sprang from her seat and rushed the stage with Richard Weir, a 60-year-old mechanical engineer from Tyneside. They launched a confetti cannon and unfurled a banner that read "Over 1.5 Degrees is a Global Shipwreck" - a reference to the news that 2024 was the first year to pass the symbolic 1.5C threshold in global average temperature rise, and a nod to the shipwreck theme in the play. It was a classic Just Stop Oil (JSO) action. The target was high profile and would guarantee publicity. The message was simple and presented in the group's signature fluorescent orange.The reaction of those affected was also a classic response to JSO. Amid the boos and whistles you can hear a shout of "idiots". "Drag them off the stage", one audience member can be heard shouting, "I hope you [expletive] get arrested," another says.JSO is a UK-based environmental activist group that aims to end fossil fuel extraction and uses direct action to draw attention to its cause. It has been called a "criminal cult" and its activists branded "eco-loons" by the Sun. The Daily Mail has described it as "deranged" and says its members have "unleashed misery on thousands of ordinary people though their selfish antics".JSO HandoutIt is the group's road protests that have probably caused the most disruption – and public anger.The group has thrown soup at a Van Gogh in the National Gallery, exploded a chalk dust bomb during the World Snooker Championship in Sheffield, smashed a cabinet containing a copy of the Magna Carta at the British Library, sprayed temporary paint on the stones of Stonehenge and even defaced Charles Darwin's grave.But it is the group's road protests that have probably caused the most disruption – and public anger. In November 2022, 45 JSO members climbed gantries around the M25 severely disrupting traffic for over four days. People missed flights, medical appointments and exams as thousands of drivers were delayed for hours. The cost to the Metropolitan Police was put at £1.1 million.Just Stop Oil was born out of Extinction Rebellion (XR). XR – founded in 2018 - brought thousands of people onto the streets in what were dubbed "festivals of resistance". They came to a peak in April 2019, when protestors brought parts of the capital to a halt for more than a week and plonked a large pink boat in the middle of Oxford Circus.The spectacle and disruption XR caused generated massive media attention, but the police were furious. Hundreds of officers were diverted from frontline duties and by the end of 2019 the bill for policing the protests had reached £37m.And behind the scenes XR was riven by furious debates about tactics. Many inside the movement said it should be less confrontational and disruptive but a hard core of activists argued it would be more effective to double down on direct action.It became clear that there was room for what Sarah Lunnon, one of the co-founders of Just Stop Oil, calls "a more radical flank". They decided a new, more focused operation was needed, modelled on earlier civil disobedience movements like the Suffragettes, Gandhi's civil disobedience campaigns and the civil rights movement in the US.The group was formally launched on Valentine's Day, 2022. It was a very different animal to XR. Instead of thousands of people taking part in street carnivals, JSO's actions involved a few committed activists. A small strategy group oversaw the campaign and meticulously planned its activities. A mobilisation team worked to recruit new members, and another team focused on supporting activists after they were arrested.Getty ImagesJust Stop Oil protesters invading a Rugby matchThe dozens of actions the group has carried out generated lots of publicity, but also massive public opposition. There were confrontations between members of the public and protestors and an outcry from politicians across all the main political parties.The police said they needed more powers to deal with this new form of protest and they got them. New offences were created including interfering with national infrastructure, "locking on" – chaining or gluing yourself to something – and tunnelling underground. Causing a public nuisance also became a potential crime – providing the police with a powerful new tool to use against protestors who block roads.In the four years since it was formed dozens of the group's supporters have been jailed. Five activists were handed multi-year sentences for their role in the M25 actions in 2022. Those were reduced on appeal earlier this month but are still the longest jail terms for non-violent civil disobedience ever issued.Senior JSO members deny the crackdown had anything to do with the group's decision to "hang up the hi-vis" – as its statement this week announcing the end of campaign put it.JSO's public position is that it has won its battle. "Just Stop Oil's initial demand to end new oil and gas is now government policy, making us one of the most successful civil resistance campaigns in recent history," the group claimed.The government has said it does not plan to issue any new licences for oil and gas production but strongly denies its policies have a link to JSO. Furthermore, the Prime Minister's official spokesperson told journalists: "We have been very clear when it comes to oil and gas that it has a future for decades to come in our energy mix."And the group's wider goal – to end the production of oil and gas – has manifestly not been achieved. The members of the group I spoke to for this article all agree the climate crisis has deepened.AFPA protest at the Aston Martin showroom in central LondonIn the face of stiffer sentences, some climate campaigners have said they will turn to more clandestine activities. One new group says it plans a campaign of sabotage against key infrastructure. In a manifesto published online it says it plans to "kickstart a new phase of the climate activist movement, aiming to shut down key actors of the fossil fuel economy."That's not a direction the JSO members I spoke to said they wanted to go. Sarah Lunnon said a key principle of JSO and the civil disobedience movement generally was that activists would take responsibility for their actions. One of the first questions new joiners were asked is whether they would be willing to be locked up."As corporations and billionaires corrupt political systems across the world, we need a different approach. "We are creating a new strategy, to face this reality and to carry our responsibilities at this time," the group says, suggesting they may be planning to form a new movement.JSO's most high-profile figure, Roger Hallam, is one of the five activists convicted for their role in the M25 protests. In a message from his prison cell he acknowledged that JSO has only had a "marginal impact". That is "not due to lack of trying," he said. The failure lay with the UK's "elites and our leaders" who had walked away from their responsibility to tackle the climate crisis, Hallam claimed. A hint perhaps that the group's new focus might be on the political system itself.JSO has said its last protest – to be held at the end of April – will mark "the end of soup on Van Goghs, cornstarch on Stonehenge and slow marching in the streets". But don't believe it. When pressed, the JSO members I spoke to said they may well turn back to disruptive tactics but under a new name and with a new and as yet unspecified objective.

Amid Trump Cuts, Climate Researchers Wait for the Ax to Fall

Climate experts whose research is funded by federal grants hide, whisper and wait for their jobs to disappear

Climate Researchers Wait for the Ax to FallClimate experts whose research is funded by federal grants hide, whisper and wait for their jobs to disappearBy Ariel Wittenberg, Chelsea Harvey & E&E News The Trump administration has slashed jobs and funding at the National Institutes of Health. Mark Wilson/Newsmakers/Getty ImagesCLIMATEWIRE | The National Institutes of Health has canceled grants for research on diversity, Covid-19 and vaccines. Climate scientists are hoping their work won’t be next — but fear it could be.“We are holding our breaths because we know we are on their list of targets,” said Marsha Wills-Karp, chair of the Johns Hopkins University Department of Environmental Health and Engineering. “It feels like it’s been slash and burn. We are hopeful they won’t get to climate, but we know it’s not likely.”Researchers in her department have received NIH grants to study the effects of wildfire air pollution on preterm birth rates and how hotter weather is affecting the health of babies at birth, measured by their weight and potential complications. They’re also studying how climate change is affecting nutrition.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.At the University of Washington, Kristie Ebi is fearful that NIH could cut grants that fund studies about which populations are more vulnerable to extreme heat — a project that the team is planning to expand to include the dangers of wildfire smoke.“We’re working to provide information that departments of health, communities and individuals can use,” Ebi said. “The more you know, the more of those lives you can save.”None of those programs haven’t been cut yet. But there’s reason to think they could be, and soon.Earlier this week, ProPublica reported on an internal NIH memo that outlined how the agency will no longer fund research on the health effects of climate change. It followed a story in Mother Jones showing that NIH had ended three climate-related programs, including the Climate Change and Health Initiative. The program was created in 2022 and has had annual congressional appropriations of $40 million, according to a December NIH report that was taken offline by the agency earlier this year.“HHS is taking action to terminate research funding that is not aligned with NIH and HHS priorities,” said Emily Hilliard, a department spokesperson.“As we begin to Make America Healthy Again, it’s important to prioritize research that directly affects the health of Americans,” she added. “We will leave no stone unturned in identifying the root cause of the chronic disease epidemic as part of our mission to Make America Healthy Again.”She did not respond to questions about whether HHS believes that research into the health effects of heat and other types of extreme weather are aligned with agency priorities or whether HHS believes that heat waves affect the health of Americans. NIH did not respond to a request for comment.Heat is the No. 1 weather-related killer in the U.S., according to the Centers for Disease Control and Prevention, an agency within HHS. Heat caused or contributed to at least 2,300 deaths in 2023, CDC records show.In addition to turbocharging temperatures, climate change can affect people's health by increasing the prevalence of vector-borne diseases and the number of wildfires, whose smoke has been shown to increase asthma and cause cardiovascular problems.Those connections have long been studied with funding from the National Institutes of Environmental Health Sciences. Then in 2022, NIH broadened the scope of federal funding for climate health research, directing each of the agency’s 26 centers and institutes to study the dangers of climate change. At the time, the agency said “a mounting number of assessments and reports provide undeniable evidence that climate change is resulting in … direct and indirect consequences for human health and well-being.”Most of the climate researchers contacted by POLITICO's E&E News declined to talk publicly about their funding, citing concerns about their grants being rescinded if they spoke to the media.One researcher who was awarded federal funding said some experts in the climate and health field are pausing work related to their grants, like hiring.Others have turned down speaking requests because they're concerned about attracting attention from the Trump administration. Their work often focuses on how extreme weather has disproportional effects on the health of communities of color, according to several researchers who were granted anonymity for fear of retribution. One said that they declined a speaking invitation to avoid “accidentally us[ing] language we are not supposed to and then be told our language is not compliant with various executive orders” on diversity and equality.“We’ve been told we need to comply with those executive orders as federal grantees, but it’s hard to do if you are funded for something that the name is something you are not allowed to say,” the researcher said. “No one wants to do a social media post or a webinar or an event that might get them in trouble.”An annual conference hosted by NIH, Boston University and the Harvard School of Public Health was postponed earlier this month.Linda Birnbaum, who led the National Institutes of Environmental Health Sciences until 2017, said that during the first Trump administration, researchers were able to circumvent directives by wording grant applications as “climate and health” rather than “climate change.”“It worked then. I don’t think that will work anymore,” she said.Reprinted from E&E News with permission from POLITICO, LLC. Copyright 2025. E&E News provides essential news for energy and environment professionals.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.