Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Nearsightedness Has Become a Global Health Issue

News Feed
Tuesday, October 1, 2024

In 350 B.C.E. Aristotle noted that some people went about their days with what he called “short sight.” People with this condition, he found, would habitually narrow their eyelids to focus their vision—an observation widely credited as the first attempt at defining nearsightedness, or myopia. More than two millennia later, health officials are paying new attention to this old condition for a startling reason: myopia has reached epidemic levels worldwide.Myopia’s prevalence has dramatically increased in recent decades, now affecting as much as 88 percent of the population in some Asian countries. Although it seems most acute in Asian cities, myopia’s growing prevalence is by no means an exclusively regional trend. By 2050, according to one estimate, five billion people—half the world’s population—will be nearsighted. The U.S., which has been less diligent than some other countries in tracking myopia cases, saw a jump in prevalence from 25 percent of people aged 12 to 54 in the early 1970s to 42 percent in the early 2000s, according to the last major national survey of the condition.These statistics matter because myopia is a leading cause of visual impairment, and it can precipitate serious diagnoses that range from detached retinas to glaucoma.On supporting science journalismIf you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.A search is now underway for tangible measures to stem this rising tide. An expert panel from the National Academies of Sciences, Engineering and Medicine (NASEM) released a report in September entitled Myopia: Causes, Prevention, and Treatment of an Increasingly Common Disease. It lays out a series of recommendations, one of which calls for the Centers for Medicare & Medicaid Services to reclassify myopia as a disease that necessitates a medical diagnosis—a step that would encourage federal and state agencies, along with professional associations, to devote resources to reversing the situation. Notably, the committee also recommended that children spend one to two hours outdoors each day.Terri L. Young, co-chair of the NASEM committee that produced the report and chair of the department of ophthalmology and visual sciences at the University of Wisconsin–Madison, talked with Scientific American about the implications of the myopia epidemic for people with myopia and policymakers.[An edited transcript of the interview follows.]I’d like to begin with the most basic of basics. Could you define what myopia, or nearsightedness, is?I’ll start off with what a person with myopia experiences. Myopia is a condition in which an individual sees an object up close clearly but cannot see it clearly at a distance without optical correction. They have natural blurred vision at a distance.Optically, there is a detailed definition that involves the very basics of how we see. Scattered light rays that enter the eye pass through multiple ocular components that reduce the scatter to focus the rays onto the retina, which converts the light into an electrical signal that is transferred through the optic nerve. The optic nerve is similar to a telephone cable that connects the eye to the occipital cortex at the very back of the brain, where what is viewed is then processed and interpreted.The focus of those wavelengths that enter the eye and travel through all its optical components needs to coincide on the retina. In the case of nearsightedness, or myopia, the focus of the light occurs in front of the retina.Myopia seems to be getting more attention lately, both in the U.S. and internationally. Why is that?Myopia prevalence rates are at epidemic levels, especially in urban Asian communities, where in recent times upward of 80 to 90 percent of young individuals have developed myopia. There are large, government-sponsored myopia research institutes in many parts of Asia, including Taiwan, Singapore, China, Hong Kong and Japan.Take Singapore, for example. All young men there are required to perform [two years] of military service after completing high school. Many of these military conscripts, and in particular the ones who are being prepared to go into battle or fly fighter planes, often need glasses or other corrective means for their myopia to fulfill those functions, causing concern for national security.And what about in the U.S.?It’s now certainly an issue in the U.S. as well. Research on myopia is conducted primarily in ophthalmologic and optometric training and research academic programs. But it hasn’t garnered, for whatever reasons, the same sense of urgency and funding as is the case for other parts of the world.In the U.S., we don’t have good prevalence data for myopia and other refractive errors, such as astigmatism and hyperopia [farsightedness]. Health care in this country is so varied in terms of everything from access to dissemination of vision care; because we don’t have a nationalized health system, we also don’t have a national database to provide standardized tracking and reporting.Aren’t there already simple ways to deal with myopia, such as getting a new prescription for glasses? Why is it perceived as becoming a global health problem?Myopia correction is not just an inconvenience of glasses or contact lenses. It predisposes a person to other eye conditions that can lead to blindness. Higher degrees of myopia are associated with eye conditions: premature cataracts, glaucoma, retinal tears and detachments and myopic macular degeneration.What’s happened in Asian communities is that the baseline level of refraction, the deflection of wavelengths as they pass through the eye, is trending toward nearsightedness. This shift is reflected in more individuals with high-grade myopia, with its increased ocular risks, as I described earlier. So instead of that group reflecting 3 to 5 percent of myopic individuals, it’s risen to 10 percent or more.Access to quality vision care, with proper and standardized dissemination for all children, is a major issue in [the U.S.] There are many children who don’t have steady access to care and the opportunity for continued changes in spectacle correction as they grow. If they can’t see, they can’t learn. If they don’t learn, they may get discouraged. If they get discouraged, they tend to act out or to not perform well in school—which has lifelong educational, vocational and economic impacts.Is there some idea why this myopia epidemic is happening?Nowadays, children are indoors more often, and they’re not getting as much outdoor play. Outdoor light enables the visual system to process a variety of spectral wavelengths of light for a certain duration of time, and that affects normal eye development and growth. Our report reaffirms what has been in the scientific literature for more than 15 years: increased childhood outdoor time appears to be protective for myopia onset and development.In urban Asia, education is highly regarded, and children undergo indoor schooling for relatively more hours per day—routinely with additional tutorial sessions on evenings and weekends. In Singapore, for example, there are fewer green spaces, and living situations are generally more vertical because of limited land mass. There are fewer nonclassroom hours and places for children to go outside to view the horizon for extended periods of time. That’s becoming more of the case in the urban U.S. as well.What does being outside do to promote healthy eyes?There are different and varied light wavelengths that enter the eye from outdoor versus indoor exposures. And there are differences in luminance—higher-intensity versus lower-intensity light levels. In the report, there is a lengthy discussion on what is called the “visual diet”—the environmental factors affecting the myopic eye—and there is a consensus that more research is needed.What about the role of electronic devices in promoting myopia?That’s certainly a trend that has exponentially grown in activity and use in our younger generations. I am a pediatric ophthalmologist. I see two- or three-year old children in my clinic who are comfortably playing with cell phones. This close-up activity is generally indoors. The limited research findings regarding electronic device impact on myopia development are inconclusive, however. Reflected in our report, studies could not support unequivocal evidence that using digital devices, especially electronic small devices, is an influencer for this shift toward myopia.What measures have countries implemented to try preventing or correcting myopia in young people?The Singapore Ministry of Health instituted outdoor playtime or recess during school hours. There are now programs in China and in Taiwan where classroom settings have been altered with the use of glass walls or colored light bulb use to increase outdoor daylight exposure. Children are undergoing treatment with atropine eye drops, which in some reports diminishes the shift toward myopia over time in the school-age years. The effect of the drops is not curative, however, and there are concerns regarding unknown long-term effects because we don’t quite understand the specific biochemical actions of atropine. Diagnosed children are also prescribed multifocal contact lenses or eyeglasses [progressive lenses that have different prescription zones to correct vision at different distances].One of the main findings of the report that you co-chaired is the recommendation that myopia be classified as a disease. Can you explain why the consensus of the panel felt that was important?The issue needs escalation to a recognized disease category to underscore its short- and long-term visual health consequences, and to attract attention and funding dollars on multiple and varied fronts for effective screening, treatment, prevention and research study.It takes a multipronged team to elevate this issue. That groundswell would have to come from parents, educators and educator societies, local to national health care systems, local to national policymakers, public health experts, researchers, funding agencies, insurance companies, etcetera. All [of these groups] need to recognize that continuous vision screening starting in early childhood is important. In addition to implementation, the data from those screening visits need to be collated for national database entry for improved monitoring in this country.What do you think should be the main takeaway from this report?In this country, if we elevate this condition to be considered a disease and recognize its impact on our children and ultimately on our future workforce, that would be monumental.

Myopia is projected to affect half of the world’s population by 2050. A new report says it needs to be countered by classifying it as a disease and upping children’s outdoor time

In 350 B.C.E. Aristotle noted that some people went about their days with what he called “short sight.” People with this condition, he found, would habitually narrow their eyelids to focus their vision—an observation widely credited as the first attempt at defining nearsightedness, or myopia. More than two millennia later, health officials are paying new attention to this old condition for a startling reason: myopia has reached epidemic levels worldwide.

Myopia’s prevalence has dramatically increased in recent decades, now affecting as much as 88 percent of the population in some Asian countries. Although it seems most acute in Asian cities, myopia’s growing prevalence is by no means an exclusively regional trend. By 2050, according to one estimate, five billion people—half the world’s population—will be nearsighted. The U.S., which has been less diligent than some other countries in tracking myopia cases, saw a jump in prevalence from 25 percent of people aged 12 to 54 in the early 1970s to 42 percent in the early 2000s, according to the last major national survey of the condition.

These statistics matter because myopia is a leading cause of visual impairment, and it can precipitate serious diagnoses that range from detached retinas to glaucoma.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


A search is now underway for tangible measures to stem this rising tide. An expert panel from the National Academies of Sciences, Engineering and Medicine (NASEM) released a report in September entitled Myopia: Causes, Prevention, and Treatment of an Increasingly Common Disease. It lays out a series of recommendations, one of which calls for the Centers for Medicare & Medicaid Services to reclassify myopia as a disease that necessitates a medical diagnosis—a step that would encourage federal and state agencies, along with professional associations, to devote resources to reversing the situation. Notably, the committee also recommended that children spend one to two hours outdoors each day.

Terri L. Young, co-chair of the NASEM committee that produced the report and chair of the department of ophthalmology and visual sciences at the University of Wisconsin–Madison, talked with Scientific American about the implications of the myopia epidemic for people with myopia and policymakers.

[An edited transcript of the interview follows.]

I’d like to begin with the most basic of basics. Could you define what myopia, or nearsightedness, is?

I’ll start off with what a person with myopia experiences. Myopia is a condition in which an individual sees an object up close clearly but cannot see it clearly at a distance without optical correction. They have natural blurred vision at a distance.

Optically, there is a detailed definition that involves the very basics of how we see. Scattered light rays that enter the eye pass through multiple ocular components that reduce the scatter to focus the rays onto the retina, which converts the light into an electrical signal that is transferred through the optic nerve. The optic nerve is similar to a telephone cable that connects the eye to the occipital cortex at the very back of the brain, where what is viewed is then processed and interpreted.

The focus of those wavelengths that enter the eye and travel through all its optical components needs to coincide on the retina. In the case of nearsightedness, or myopia, the focus of the light occurs in front of the retina.

Myopia seems to be getting more attention lately, both in the U.S. and internationally. Why is that?

Myopia prevalence rates are at epidemic levels, especially in urban Asian communities, where in recent times upward of 80 to 90 percent of young individuals have developed myopia. There are large, government-sponsored myopia research institutes in many parts of Asia, including Taiwan, Singapore, China, Hong Kong and Japan.

Take Singapore, for example. All young men there are required to perform [two years] of military service after completing high school. Many of these military conscripts, and in particular the ones who are being prepared to go into battle or fly fighter planes, often need glasses or other corrective means for their myopia to fulfill those functions, causing concern for national security.

And what about in the U.S.?

It’s now certainly an issue in the U.S. as well. Research on myopia is conducted primarily in ophthalmologic and optometric training and research academic programs. But it hasn’t garnered, for whatever reasons, the same sense of urgency and funding as is the case for other parts of the world.

In the U.S., we don’t have good prevalence data for myopia and other refractive errors, such as astigmatism and hyperopia [farsightedness]. Health care in this country is so varied in terms of everything from access to dissemination of vision care; because we don’t have a nationalized health system, we also don’t have a national database to provide standardized tracking and reporting.

Aren’t there already simple ways to deal with myopia, such as getting a new prescription for glasses? Why is it perceived as becoming a global health problem?

Myopia correction is not just an inconvenience of glasses or contact lenses. It predisposes a person to other eye conditions that can lead to blindness. Higher degrees of myopia are associated with eye conditions: premature cataracts, glaucoma, retinal tears and detachments and myopic macular degeneration.

What’s happened in Asian communities is that the baseline level of refraction, the deflection of wavelengths as they pass through the eye, is trending toward nearsightedness. This shift is reflected in more individuals with high-grade myopia, with its increased ocular risks, as I described earlier. So instead of that group reflecting 3 to 5 percent of myopic individuals, it’s risen to 10 percent or more.

Access to quality vision care, with proper and standardized dissemination for all children, is a major issue in [the U.S.] There are many children who don’t have steady access to care and the opportunity for continued changes in spectacle correction as they grow. If they can’t see, they can’t learn. If they don’t learn, they may get discouraged. If they get discouraged, they tend to act out or to not perform well in school—which has lifelong educational, vocational and economic impacts.

Is there some idea why this myopia epidemic is happening?

Nowadays, children are indoors more often, and they’re not getting as much outdoor play. Outdoor light enables the visual system to process a variety of spectral wavelengths of light for a certain duration of time, and that affects normal eye development and growth. Our report reaffirms what has been in the scientific literature for more than 15 years: increased childhood outdoor time appears to be protective for myopia onset and development.

In urban Asia, education is highly regarded, and children undergo indoor schooling for relatively more hours per day—routinely with additional tutorial sessions on evenings and weekends. In Singapore, for example, there are fewer green spaces, and living situations are generally more vertical because of limited land mass. There are fewer nonclassroom hours and places for children to go outside to view the horizon for extended periods of time. That’s becoming more of the case in the urban U.S. as well.

What does being outside do to promote healthy eyes?

There are different and varied light wavelengths that enter the eye from outdoor versus indoor exposures. And there are differences in luminance—higher-intensity versus lower-intensity light levels. In the report, there is a lengthy discussion on what is called the “visual diet”—the environmental factors affecting the myopic eye—and there is a consensus that more research is needed.

What about the role of electronic devices in promoting myopia?

That’s certainly a trend that has exponentially grown in activity and use in our younger generations. I am a pediatric ophthalmologist. I see two- or three-year old children in my clinic who are comfortably playing with cell phones. This close-up activity is generally indoors. The limited research findings regarding electronic device impact on myopia development are inconclusive, however. Reflected in our report, studies could not support unequivocal evidence that using digital devices, especially electronic small devices, is an influencer for this shift toward myopia.

What measures have countries implemented to try preventing or correcting myopia in young people?

The Singapore Ministry of Health instituted outdoor playtime or recess during school hours. There are now programs in China and in Taiwan where classroom settings have been altered with the use of glass walls or colored light bulb use to increase outdoor daylight exposure. Children are undergoing treatment with atropine eye drops, which in some reports diminishes the shift toward myopia over time in the school-age years. The effect of the drops is not curative, however, and there are concerns regarding unknown long-term effects because we don’t quite understand the specific biochemical actions of atropine. Diagnosed children are also prescribed multifocal contact lenses or eyeglasses [progressive lenses that have different prescription zones to correct vision at different distances].

One of the main findings of the report that you co-chaired is the recommendation that myopia be classified as a disease. Can you explain why the consensus of the panel felt that was important?

The issue needs escalation to a recognized disease category to underscore its short- and long-term visual health consequences, and to attract attention and funding dollars on multiple and varied fronts for effective screening, treatment, prevention and research study.

It takes a multipronged team to elevate this issue. That groundswell would have to come from parents, educators and educator societies, local to national health care systems, local to national policymakers, public health experts, researchers, funding agencies, insurance companies, etcetera. All [of these groups] need to recognize that continuous vision screening starting in early childhood is important. In addition to implementation, the data from those screening visits need to be collated for national database entry for improved monitoring in this country.

What do you think should be the main takeaway from this report?

In this country, if we elevate this condition to be considered a disease and recognize its impact on our children and ultimately on our future workforce, that would be monumental.

Read the full story here.
Photos courtesy of

Eating less sugar would be great for the planet as well as our health

"Globally, sugar intake has quadrupled over the last 60 years . . ."

Sugar addiction is on the rise. Globally, sugar intake has quadrupled over the last 60 years, and it now makes up around 8% of all our calories. This sounds like sugar's keeping us fed, but added sugars are actually empty calories – they are bereft of any nutrients like vitamins or fibers. The result is massive health costs, with sugars linked to obesity around the world. Some estimates suggest that half the global population could be obese by 2035. A limited 20% reduction in sugar is estimated to save US$10.3 billion (£8.1 billion) of health costs in the US alone. Yet, sugar's impacts go far beyond just health and money. There are also many environmental problems from growing the sugar, like habitat and biodiversity loss and water pollution from fertilizers and mills. But overall, sugar hasn't received a lot of attention from the scientific community despite being the largest cultivated crop by mass on the planet. In a recent article, we evaluated sugar's environmental impacts and explored avenues for reducing sugar in the diet to recommended levels either through reducing production or using the saved sugar in environmentally beneficial ways. By phasing out sugar, we could spare land that could be rewilded and stock up on carbon. This is especially important in biodiverse tropical regions where sugar production is concentrated such as Brazil and India. But a different, more politically palatable option might be redirecting sugar away from diets to other environmentally-beneficial uses such as bioplastics or biofuels. Our study shows that the biggest opportunity is using sugar to feed microbes that make protein. Using saved sugar for this microbial protein could produce enough plant-based, protein-rich food products to regularly feed 521 million people. And if this replaced animal protein it could also have huge emission and water benefits. We estimate that if this protein replaced chicken, it could reduce emissions by almost 250 million tons, and we'd see even bigger savings for replacing beef (for reference, the UK's national fossil fuel emissions are around 300 million tons). Given sugar has a far lower climate impact than meat, this makes a lot of sense. Another alternative is to use the redirected sugar to produce bioplastics, which would replace around 20% of the total market for polyethelyne, one of the most common forms of plastic and used to produce anything from packaging to pipes. Or to produce biofuels, producing around 198 million barrels of ethanol for transportation. Brazil already produces around 85% of the world's ethanol and they produce it from sugar, but instead of having to grow more sugar for ethanol we could redirect the sugar from diets instead. This estimation is based on a world where we reduce dietary sugar to the maximum in dietary recommendations (5% of daily calories). The benefits would be even larger if we reduced sugar consumption even further. Supply chain challenges This sounds like a big win-win: cut sugar to reduce obesity and help the environment. But these changes present a huge challenge in a sugar supply chain spanning more than 100 countries and the millions of people that depend on sugar's income. National policies like sugar taxes are vital, but having international coordination is also important in such a sprawling supply chain. Sustainable agriculture is being discussed at the UN's climate summit, Cop29, in Azerbaijan this week. Sustainable sugar production should factor into these global talks given the many environmental problems and opportunities from changing the way we grow and consume sugar. We also suggest that groups of countries could come together in sugar transition partnerships between producers and consumers that encourage a diversion of sugar away from peoples' diets to more beneficial uses. This could be coordinated by the World Health Organization which has called for a reduction in sugar consumption. Some of the money to fund these efforts could even come from part of the health savings in national budgets. We can't hope to transition the way we produce and eat sugar overnight. But by exploring other uses of sugar, we can highlight what environmental benefits we are missing out on and help policymakers map a resource-efficient path forward to the industry while improving public health.   Don't have time to read about climate change as much as you'd like? Get a weekly roundup in your inbox instead. Every Wednesday, The Conversation's environment editor writes Imagine, a short email that goes a little deeper into just one climate issue. Join the 40,000+ readers who've subscribed so far. Paul Behrens, British Academy Global Professor, Future of Food, Oxford Martin School, University of Oxford and Alon Shepon, Principal Investigator, Department of Environmental Studies, Tel Aviv University This article is republished from The Conversation under a Creative Commons license. Read the original article.

CDC warns cruise passengers of hot tub disease outbreak

The Centers for Disease Control and Prevention (CDC) has alerted cruise-goers of the dangers of hot tub usage on ships. The post CDC warns cruise passengers of hot tub disease outbreak appeared first on SA People.

CDC issues warning of hot tub-caused Legionnaires’ Disease The US Centers for Disease Control and Prevention (CDC) recently released a health warning following an outbreak of Legionnaires’ Disease among passengers who had been on cruises.  As reported by Travel News, the CDC found that a number of cases of Legionnaires’ Disease were connected by an unnamed cruise ship, between November 2022 and April 2024 of this year. Private outdoor hot tubs on the balconies of two cruise ships were pinpointed as the source of the bacteria for multiple infections between the period, as stated in a report last month from the CDC. “Epidemiologic, environmental and laboratory evidence suggests that private balcony hot tubs were the likely source of exposure in two outbreaks of Legionnaires’ disease among cruise ship passengers,” the CDC said in the report.   “These devices are subject to less stringent operating requirements than public hot tubs, and operating protocols were insufficient to prevent Legionella growth.” they added. What is Legionnaires’ Disease? According to Cleveland Clinic: “Legionnaires’ disease is a serious type of pneumonia you get when Legionella bacteria infect your lungs. Symptoms include high fever, cough, diarrhea and confusion. You can get Legionnaires’ disease from water or cooling systems in large buildings, like hospitals or hotels.” Legionella is found naturally in lakes, streams and soil, but it can also contaminate drinking water and air systems, especially in large buildings. You can breathe small droplets of water directly into your lungs, or water in your mouth can get into your lungs accidentally You also have an increased risk of getting Legionnaires’ disease if you: Are older than 50. Smoke or used to smoke cigarettes. Have a weakened immune system. Certain medical conditions (like HIV, diabetes, cancer and kidney or liver disease) and medications can compromise your immune system. Have a long-term respiratory illness, such as chronic obstructive pulmonary disease (COPD) or emphysema. Live in a long-term care facility. Have stayed in a hospital recently. Have had surgery requiring anesthesia recently. Have received an organ transplant recently. The post CDC warns cruise passengers of hot tub disease outbreak appeared first on SA People.

TCEQ to hold public permit renewal meeting for Houston concrete plant with past compliance issues

The Torres Brothers Ready Mix plant has “a history of violations,” according to the Harris County Attorney’s Office. Air Alliance Houston is urging community members to attend the Monday night meeting.

Katie Watkins/Houston Public MediaMany concrete batch plant facilities have permits to operate 24 hours a day. Residents will often complain of the bright lights and noise at night.The Texas Commission on Environmental Quality will hear public comments on the permit renewal of a concrete plant with a history of water and air pollution issues. "They have a history of noncompliance," said Crystal Ngo, environmental justice outreach coordinator with Air Alliance Houston. Over the course of three visits from 2021 through 2024, Harris County Pollution Control Services documented "significant violations" of the state's clean air and water laws at the Torres Brothers Ready Mix plant in South Houston. The Harris County Attorney's Office argued the plant is "unable to comply" with the conditions of its permit and state laws. The county is involved in ongoing litigation with the company and seeks more than $1 million in relief. Torres Brothers did not immediately respond to a request for comment. The plant is one of five in the area. TCEQ doesn't consider the cumulative impact of separate facilities in its permitting process. Instead, it examines the compliance of individual sites. Ngo pointed to public health concerns related to air, water, noise and particulate matter pollution, as well as noise and light nuisances. "With so many concrete batch planets within environmental justice communities, predominantly communities of color, this higher exposure is just disproportionate to more affluent neighborhoods in Houston," Ngo said. The meeting is scheduled for 7 p.m. Monday, Nov. 18, at the Hiram Clarke Multi-Service Center.

Standing Desks Are Better for Your Health—but Still Not Enough

Two recent studies offer some of the most nuanced evidence yet about the potential benefits and risks of working on your feet.

Without question, inactivity is bad for us. Prolonged sitting is consistently linked to higher risks of cardiovascular disease and death. The obvious response to this frightful fate is to not sit—move. Even a few moments of exercise can have benefits, studies suggest. But in our modern times, sitting is hard to avoid, especially at the office. This has led to a range of strategies to get ourselves up, including the rise of standing desks. If you have to be tethered to a desk, at least you can do it while on your feet, the thinking goes.However, studies on whether standing desks are beneficial have been sparse and sometimes inconclusive. Furthermore, prolonged standing can have its own risks, and data on work-related sitting has also been mixed. While the final verdict on standing desks is still unclear, two studies out this year offer some of the most nuanced evidence yet about the potential benefits and risks of working on your feet.Take a SeatScience NewsletterYour weekly roundup of the best stories on health care, the climate crisis, new scientific discoveries, and more. Delivered on Wednesdays.For years, studies have pointed to standing desks improving markers for cardiovascular and metabolic health, such as lipid levels, insulin resistance, and arterial flow-mediated dilation (the ability of arteries to widen in response to increased blood flow). But it's unclear how significant those improvements are to averting bad health outcomes, such as heart attacks. One 2018 analysis suggested the benefits might be minor.And there are fair reasons to be skeptical about standing desks. For one, standing—like sitting—is not moving. If a lack of movement and exercise is the root problem, standing still wouldn't be a solution.Yet, while sitting and standing can arguably be combined into the single category of “stationary,” some researchers have argued that not all sitting is the same. In a 2018 position paper published in the Journal of Occupational and Environmental Medicine, two health experts argued that the link between poor health and sitting could come down to the specific populations being examined and “the special contribution” of “sitting time at home, for example, the ‘couch potato effect.’”The two researchers—emeritus professors David Rempel, formerly at the University of California, San Francisco, and Niklas Krause, formerly of UCLA—pointed to several studies looking specifically at occupational sitting time and poor health outcomes, which have arrived at mixed results. For instance, a 2013 analysis did not find a link between sitting at work and cardiovascular disease. Though the study did suggest a link to mortality, the link was only among women. There was also a 2015 study on about 36,500 workers in Japan who were followed for an average of 10 years. That study found that there was no link between mortality and sitting time among salaried workers, professionals, and people who worked at home businesses. However, there was a link between mortality and sitting among people who worked in farming, forestry, and fishing industries.Still, despite some murkiness in the specifics, more recent studies continue to turn up a link between total prolonged sitting—wherever that sitting occurs—and poor health outcomes, particularly cardiovascular disease. This has kept up interest in standing desks in offices, where people don't always have the luxury of frequent movement breaks. And this, in turn, has kept researchers on their toes to try to answer whether there is any benefit to standing desks.

Breathing Dirty Air Might Raise Eczema Risks

By Ernie Mundell HealthDay ReporterFRIDAY, Nov. 15, 2024 (HealthDay News) -- Cases of the autoimmune skin condition eczema appear to rise in areas...

By Ernie Mundell HealthDay ReporterFRIDAY, Nov. 15, 2024 (HealthDay News) -- Cases of the autoimmune skin condition eczema appear to rise in areas most plagued by air pollution, new research shows.Since data has long shown that rates of eczema -- clinically known as atopic dermatitis -- increase along with industrialization, dirty air might be a connecting link, according to the team from Yale University.“Showing that individuals in the United States who are exposed to particulate matter [in air] are more likely to have eczema deepens our understanding of the important health implications of ambient air pollution," wrote researchers led by Yale School of Medicine investigator Gloria Chen.Her team published its findings Nov. 13 in the journal PLOS ONE.According to the National Eczema Association, over 31 million Americans have the skin disorder, "a group of inflammatory skin conditions that cause itchiness, dry skin, rashes, scaly patches, blisters and skin infections."The exact causes of eczema aren't clear, but it's thought to originate in an an overactive immune system that responds to certain environmental triggers.Could air pollution be one of those triggers?To find out, the Yale team looked at data on almost 287,000 Americans, about 12,700 of who (4.4%) had an eczema diagnosis.They compared local eczema rates against levels of air pollution in zip codes across the United States.Chen's team focused especially on what's known as "fine particulate matter" -- microscopic bits of pollution that can get deep into the lungs with each breath.The result: With every increase of 10 micrograms of fine particulate matter per square meter of air that was recorded in a zip code, residents' odds for eczema doubled, the Yale group found.That risk assessment held even after the researchers factored in other possible triggers, including smoking.The study couldn't prove a cause and effect relationship, only associations. But the team pointed to similar findings from studies conducted in places as varied as Australia, Germany and Taiwan.Besides playing a role in the development of eczema, "individuals [already diagnosed] with eczema may be at elevated risk for disease exacerbation or acute flares" when local air quality declines, the researchers wrote.On very smoggy days, "patients may be advised to stay indoors, filter indoor air or cover exposed skin outdoors," Chen and colleagues added.SOURCE: PLOS ONE, Nov. 14, 2024Copyright © 2024 HealthDay. All rights reserved.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.