Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Is the Earth itself a giant living creature?

News Feed
Monday, April 22, 2024

Rachel Victoria Hillis for Vox An old, much-ridiculed hypothesis said yes. It’s time to take it seriously. In the 1970s, chemist James Lovelock and microbiologist Lynn Margulis put forth a bold theory: The Earth is a giant living organism. When a mammal is hot, it sweats to cool itself off. If you nick your skin with a knife, the skin will scab and heal. Lovelock and Margulis argued that our planet has similar processes of self-regulation, which arguably, make it seem like the Earth itself is alive. The idea wasn’t unprecedented in human history. “The fundamental concept of a living world is ancient,” says Ferris Jabr, a science journalist and author of the upcoming book Becoming Earth: How Our Planet Came to Life. The book explores all the ways life has shaped our physical world and, in doing so, inevitably revisits the question “Is the Earth alive?” Lovelock and Margulis called the idea “the Gaia Hypothesis” — named after the ancient Greek goddess of the Earth. It was openly mocked by many in mainstream Western science. “For many decades, the Gaia hypothesis was considered kind of this fringe sort of woo-woo idea,” Jabr says. “Because for biologists,” Jabr says, life is a specific thing. “It is typically thought of as an organism that is a product of Darwinian evolution by natural selection. And Earth as a planet does not meet those criteria.” It didn’t help that the original articulation of Gaia granted Earth a certain degree of sentience. The hypothesis argued “all of the living organisms on Earth are collaborating to deliberately create a climate that is suitable for life,” as Jabr says. But yet, this idea has persisted, for a few reasons. Scientists have never been able to precisely define what life is. So, it’s been hard to dismiss Gaia completely. The Gaia hypothesis has also evolved over the years. Later iterations deemphasized that life was “collaborating” to transform the Earth, Jabr explains. Which still leaves a lot to be explored: Certainly living things don’t need to be thought of as conscious, or have agency, to be considered alive. Consider the clam, which lacks a central nervous system. Jabr found in the years since Gaia was first introduced, scientists have uncovered more connections between biology, ecology, and geology, which make the boundaries between these disciplines appear even more fuzzy. The Amazon rainforest essentially “summons” its own rain, as Jabr explains in his book. They learned how life is involved in the process that generated the continents. Life plays a role in regulating Earth’s temperature. They’ve learned that just about everywhere you look on Earth, you find life influencing the physical properties of our planet. In reporting his book, Jabr comes to the conclusion that not only is the Earth indeed a living creature, but thinking about it in such a way might help inspire action in dealing with the climate crisis. Brian Resnick spoke to Jabr for an episode of Unexplainable, Vox’s podcast that explores scientific mysteries, unanswered questions, and all the things we learn by diving into the unknown. You can listen to the full conversation here. This interview has been edited for length and clarity. Brian Resnick Do you think the Earth is alive? Ferris Jabr I do. I think Earth is alive. We can think of Earth as a genuine living entity, in a meaningful sense, and in a scientific sense. There are four parts to the argument that substantiate that statement. Brian Resnick What’s the first? Ferris Jabr Life isn’t just on Earth. It literally came out of Earth. It is literally part of Earth. It is Earth. All of the matter that we refer to as life is Earth animated — that’s how I come to think about it. If you accept that, then at a bare minimum, you have to accept as a scientific fact that the surface of the planet is genuinely alive, because it is matter that has become animated. Brian Resnick Earth animated? What do you mean by that? Ferris Jabr Every single living organism is literally made of Earth. All of its constituent elements and components are parts of the planet. We all come from the planet. We all return to the planet. It’s just a big cycle. And so life, the biological matter on the planet, is literally the matter of the planet, animated. It is living matter. Imagine a vast beach and sandcastles and other sculptures spontaneously emerge from the sand. They are still made of sand, right? They’re not suddenly divorced from the beach just because they’ve arisen from the beach. Those castles and sculptures are still literally the beach. And I think it’s the same with life and Earth. Brian Resnick So, the physical components of Earth are the material of life. And so distinguishing these two — Earth and life — seems silly because they comprise each other? Ferris Jabr The more you think about this, the more the boundaries dissolve. Every layer of the planet that we’ve been able to access, we find life there. And in the deepest mines that we have dug, we continue to find microbes and sometimes even more complex organisms like nematodes, these tiny, worm-like creatures. Brian Resnick So all life contains Earth, and Earth contains life? Ferris Jabr There are components of the Earth that are not alive in any way. The center of the planet, it’s all molten rock and there might be some solid metal in the core. But think about a redwood tree: It is mostly dead wood in terms of its volume and mass. It is mostly nonliving tissue. And then a little bit of tissue that is laced with living cells. So, you know, most complex multicellular living entities are a jumble of the animate and inanimate. Earth is not unusual in that way. Brian Resnick What is part two of your argument? Ferris Jabr All these organisms [on Earth], they give Earth a kind of anatomy and physiology. Life dramatically increases the planet’s capacity to absorb, store, and transform energy, to exchange gases, and to perform complex chemical reactions. Brian Resnick What’s a good example of this? Ferris Jabr You can think of all of the photosynthetic life on the planet acting in concert. It’s not that they’re deliberately collaborating to do something, but they’re all doing their own thing at the same time. NASA has made these amazing videos and animations and they’ve literally called them “Earth breathing,” because you can see how the levels of carbon dioxide and oxygen in the atmosphere fluctuate with the seasons. The amount of vegetation that rings the continents, especially in the Northern Hemisphere, in the mid-latitudes, it changes dramatically with the seasons. It has a sinuous rhythm. It looks like a pulse or like breathing. Brian Resnick So, are you saying something like all of the algae or plankton in the ocean are generating this together? … Is that kind of like how all of the cells in my lungs are working together to exchange gases? Or is that not quite the right way to think about it? Ferris Jabr I think we have to be careful with making too direct a comparison. You as an organism are a product of evolution by natural selection. Your structure, your anatomy is something that was written into your genome. That’s not how the Earth system formed. Brian Resnick I’m realizing a key to this conversation is what you just corrected me on. When we’re discussing this notion about the “Earth being alive,” we’re not suggesting it’s not alive in the same way you and I are. But there’s these equivalent processes that look very similar to the way my body maintains homeostasis, for example. It’s not like the Earth is exchanging gases and doing metabolism-like things in the way I’ve been evolved to. It’s not achieving homeostasis the way you or I do. But yet it is doing something that seems analogous. Is that the kind of thing that you’re arguing here, overall? Ferris Jabr Absolutely. When we’re looking at the planet, we see life-like qualities, things that resemble the characteristics of the organism, which is the most familiar life form to us. But it is not exactly the same. It is still genuinely alive, in my opinion, but is not exactly an organism. Life is a phenomenon that occurs at multiple scales. The way I think of it is that it’s not identical at all of those scales, but it rhymes and there are analogies between each of those scales. I like to think of a leaf on a tree in a forest on a planet. There’s no disagreement whatsoever within science that the cells that compose that leaf are alive. The tissues that those cells form are alive. The leaf as a whole is a living tissue. The tree we consider an organism that is also alive. We consider each of those layers to be alive. There’s no debate or controversy about that. Once we go above the scale of the organism, this is where the debate begins. Can we think of the forest, the ecosystem, as alive as well? And then one more level higher. Can we think of the planet as alive? My argument is, yes, that each of those levels, each of those scales is equally alive but not identical. And there are analogous processes that happen at each. But they’re not exactly the same. Brian Resnick What is the next plank of your argument? Ferris Jabr Life is also an engine of planetary evolution. The planet evolves over time dramatically. It is not exactly the same as standard Darwinian evolution through natural selection, but it is very much a type of evolution. Organisms and their environments continually co-evolve. Each is profoundly changing the other. This reciprocal transformation is responsible for many of the planet’s defining features: for our breathable atmosphere, our blue sky, our bountiful oceans, our fertile soils. This is all because of life and because of the way that life has changed the planetary environments. These are not default features of the planet. Life has created them over time. Brian Resnick What is the most stunning example of how life has actually changed the planet? Ferris Jabr In the beginning, Earth had essentially no free oxygen in its atmosphere, and the sky was probably a hazy orange. And when cyanobacteria began to oxygenate the atmosphere through the innovation of photosynthesis, the sky probably started shifting toward the blue part of the spectrum. The entire chemistry of the planet changed. I mean, you suddenly had an oxygen-rich environment, whereas before it was an oxygen-poor environment. That changes absolutely everything. Brian Resnick Okay, so to get back to what you were saying before, it’s not that Earth evolves in the same way that organisms evolve. But it evolves with a different mechanism, is that right? Ferris Jabr Evolutionary biologists will say a planet cannot evolve because it doesn’t have a cohesive genome. There’s no genetic inheritance going on; there’s no sexual reproduction going on. But there are analogous processes by which changes are passed down from generation to generation that are not genetically encoded. If we think about a bunch of large mammals, they’re transforming their landscape by walking through it with their immense hefts. They’re tearing down vegetation. They’re digging in, uprooting things. They’re changing the landscape. Those changes persist. And so their descendants now are evolving in a new environment changed by their predecessors. These environmental changes are not themselves genetically encoded, but they are being passed from generation to generation, and they are inevitably influencing the evolution that follows. Brian Resnick If a fundamental part of life is that it changes the world in which it exists, how are we different for accelerating the climate crisis? Because you look at the history of the Earth and you say, well, life has powerfully changed it. Who’s to say what we’re doing is necessarily not a natural process? Ferris Jabr It’s simultaneously humbling and empowering to recognize ourselves as simply the latest chapter in this long evolutionary saga of life changing the planet. It is a basic property of life to change its environment, and we’re not an exception to that. But I do think there’s a major distinction between what our species has done and what has happened before in terms of the combined scale and speed and the variety of our changes to the planet. I don’t think there’s any species or creature before us that has changed the planet on such a large scale so quickly and in so many different ways simultaneously. We have radically altered the atmosphere, the oceans, and the continents. We’ve done it in a couple of centuries. That’s a huge part of the reason for why the crisis we’re going through right now is a crisis. It has so much to do with the scale and the speed of it. Brian Resnick What’s part four of your argument? Ferris Jabr This co-evolution, on the whole, has amplified the planet’s capacity for self-regulation and enhanced Earth’s resilience. Earth has remained alive for, you know, around 4 billion years, despite repeated catastrophes of unfathomable scale, unlike anything that we have ever experienced in human history. We have to account for that resilience, for that incredible persistence through time. It is not a deliberate thing. You know, it is not a conscious or collaborative thing. It is simply an inevitable physical process, just as evolution by natural selection is an inevitable physical process. Even in the mass extinctions in Earth’s history, life recedes to its most fundamental and most resilient forms: microbes. And then life sprouts from there. Brian Resnick Are you sure you’re right about all this? Is the scientific community coming around to accept this notion that Earth is indeed alive? Ferris Jabr I mean, this book is my personal synthesis, an argument. You know, this is my viewpoint. This is how I have come to see the Earth. There are scientists who agree with me, but I would not say that this is the consensus of modern mainstream science. I think the statement that Earth is alive remains quite controversial and provocative. However, everything else we’ve been talking about, the co-evolution of life and environment, the fact that life has profoundly changed the planet. These are all well-accepted points. Brian Resnick Which part are you most likely wrong about? Or which part do you feel like has the most room for doubt? Ferris Jabr We do not have a precise, universally accepted definition of life. We haven’t explained it on the most fundamental level. Like 100 years from now, will we have a fundamental explanation for life that we’re missing right now? And if we do, will that make thinking of planets as alive defunct? And so, I think open-mindedness is fundamental to any scientific thinking or scientific process. And we have to be open to the idea that a century from now, or even sooner, all of this will be wrong. And that’s part of what I find thrilling: We don’t have all of the answers yet. Right? These are incredibly challenging ideas and concepts that we are still working out. If we had figured it out, then we wouldn’t be talking about the Gaia hypothesis anymore. The Gaia would have been officially dead a long time ago. But I think the reason that it remains relevant and continues to be debated means that we just haven’t figured it out yet. Brian Resnick Why is it useful to think of the Earth as alive? Ferris Jabr There’s a massive difference between thinking of ourselves as living creatures that simply reside on a planet, that simply inhabit a planet, versus being a component of a much larger living entity. When we properly understand our role within the living Earth system, I think the moral urgency of the climate crisis really comes into focus. All of a sudden it’s not just that, oh, the bad humans have harmed the environment and we need to do something about it. It’s that each of us is literally Earth animated, and we are one part of this much larger, living entity. It’s a realization that everything that we are all doing moment to moment, day to day, is affecting this larger living entity in some way. Brian Resnick So, the simple point that you’re making is that we are Earth, and don’t self-harm. Ferris Jabr Right, exactly.

An illustration of a land mass is covered in wildlife, lush greenery and people all interacting. Blue water and sea life surrounds.
Rachel Victoria Hillis for Vox

An old, much-ridiculed hypothesis said yes. It’s time to take it seriously.

In the 1970s, chemist James Lovelock and microbiologist Lynn Margulis put forth a bold theory: The Earth is a giant living organism.

When a mammal is hot, it sweats to cool itself off. If you nick your skin with a knife, the skin will scab and heal. Lovelock and Margulis argued that our planet has similar processes of self-regulation, which arguably, make it seem like the Earth itself is alive.

The idea wasn’t unprecedented in human history. “The fundamental concept of a living world is ancient,” says Ferris Jabr, a science journalist and author of the upcoming book Becoming Earth: How Our Planet Came to Life. The book explores all the ways life has shaped our physical world and, in doing so, inevitably revisits the question “Is the Earth alive?”

Lovelock and Margulis called the idea “the Gaia Hypothesis” — named after the ancient Greek goddess of the Earth. It was openly mocked by many in mainstream Western science. “For many decades, the Gaia hypothesis was considered kind of this fringe sort of woo-woo idea,” Jabr says. “Because for biologists,” Jabr says, life is a specific thing. “It is typically thought of as an organism that is a product of Darwinian evolution by natural selection. And Earth as a planet does not meet those criteria.”

It didn’t help that the original articulation of Gaia granted Earth a certain degree of sentience. The hypothesis argued “all of the living organisms on Earth are collaborating to deliberately create a climate that is suitable for life,” as Jabr says. But yet, this idea has persisted, for a few reasons. Scientists have never been able to precisely define what life is. So, it’s been hard to dismiss Gaia completely.

The Gaia hypothesis has also evolved over the years. Later iterations deemphasized that life was “collaborating” to transform the Earth, Jabr explains. Which still leaves a lot to be explored: Certainly living things don’t need to be thought of as conscious, or have agency, to be considered alive. Consider the clam, which lacks a central nervous system.

Jabr found in the years since Gaia was first introduced, scientists have uncovered more connections between biology, ecology, and geology, which make the boundaries between these disciplines appear even more fuzzy. The Amazon rainforest essentially “summons” its own rain, as Jabr explains in his book. They learned how life is involved in the process that generated the continents. Life plays a role in regulating Earth’s temperature. They’ve learned that just about everywhere you look on Earth, you find life influencing the physical properties of our planet.

In reporting his book, Jabr comes to the conclusion that not only is the Earth indeed a living creature, but thinking about it in such a way might help inspire action in dealing with the climate crisis.

Brian Resnick spoke to Jabr for an episode of Unexplainable, Vox’s podcast that explores scientific mysteries, unanswered questions, and all the things we learn by diving into the unknown. You can listen to the full conversation here. This interview has been edited for length and clarity.

Brian Resnick

Do you think the Earth is alive?

Ferris Jabr

I do. I think Earth is alive. We can think of Earth as a genuine living entity, in a meaningful sense, and in a scientific sense. There are four parts to the argument that substantiate that statement.

Brian Resnick

What’s the first?

Ferris Jabr

Life isn’t just on Earth. It literally came out of Earth. It is literally part of Earth. It is Earth. All of the matter that we refer to as life is Earth animated — that’s how I come to think about it. If you accept that, then at a bare minimum, you have to accept as a scientific fact that the surface of the planet is genuinely alive, because it is matter that has become animated.

Brian Resnick

Earth animated? What do you mean by that?

Ferris Jabr

Every single living organism is literally made of Earth. All of its constituent elements and components are parts of the planet. We all come from the planet. We all return to the planet. It’s just a big cycle. And so life, the biological matter on the planet, is literally the matter of the planet, animated. It is living matter.

Imagine a vast beach and sandcastles and other sculptures spontaneously emerge from the sand. They are still made of sand, right? They’re not suddenly divorced from the beach just because they’ve arisen from the beach. Those castles and sculptures are still literally the beach. And I think it’s the same with life and Earth.

Brian Resnick

So, the physical components of Earth are the material of life. And so distinguishing these two — Earth and life — seems silly because they comprise each other?

Ferris Jabr

The more you think about this, the more the boundaries dissolve.

Every layer of the planet that we’ve been able to access, we find life there. And in the deepest mines that we have dug, we continue to find microbes and sometimes even more complex organisms like nematodes, these tiny, worm-like creatures.

Brian Resnick

So all life contains Earth, and Earth contains life?

Ferris Jabr

There are components of the Earth that are not alive in any way. The center of the planet, it’s all molten rock and there might be some solid metal in the core.

But think about a redwood tree: It is mostly dead wood in terms of its volume and mass. It is mostly nonliving tissue. And then a little bit of tissue that is laced with living cells. So, you know, most complex multicellular living entities are a jumble of the animate and inanimate. Earth is not unusual in that way.

Brian Resnick

What is part two of your argument?

Ferris Jabr

All these organisms [on Earth], they give Earth a kind of anatomy and physiology. Life dramatically increases the planet’s capacity to absorb, store, and transform energy, to exchange gases, and to perform complex chemical reactions.

Brian Resnick

What’s a good example of this?

Ferris Jabr

You can think of all of the photosynthetic life on the planet acting in concert. It’s not that they’re deliberately collaborating to do something, but they’re all doing their own thing at the same time.

NASA has made these amazing videos and animations and they’ve literally called them “Earth breathing,” because you can see how the levels of carbon dioxide and oxygen in the atmosphere fluctuate with the seasons. The amount of vegetation that rings the continents, especially in the Northern Hemisphere, in the mid-latitudes, it changes dramatically with the seasons. It has a sinuous rhythm. It looks like a pulse or like breathing.

Brian Resnick

So, are you saying something like all of the algae or plankton in the ocean are generating this together? … Is that kind of like how all of the cells in my lungs are working together to exchange gases? Or is that not quite the right way to think about it?

Ferris Jabr

I think we have to be careful with making too direct a comparison. You as an organism are a product of evolution by natural selection. Your structure, your anatomy is something that was written into your genome. That’s not how the Earth system formed.

Brian Resnick

I’m realizing a key to this conversation is what you just corrected me on. When we’re discussing this notion about the “Earth being alive,” we’re not suggesting it’s not alive in the same way you and I are. But there’s these equivalent processes that look very similar to the way my body maintains homeostasis, for example. It’s not like the Earth is exchanging gases and doing metabolism-like things in the way I’ve been evolved to. It’s not achieving homeostasis the way you or I do. But yet it is doing something that seems analogous. Is that the kind of thing that you’re arguing here, overall?

Ferris Jabr

Absolutely.

When we’re looking at the planet, we see life-like qualities, things that resemble the characteristics of the organism, which is the most familiar life form to us. But it is not exactly the same. It is still genuinely alive, in my opinion, but is not exactly an organism.

Life is a phenomenon that occurs at multiple scales. The way I think of it is that it’s not identical at all of those scales, but it rhymes and there are analogies between each of those scales.

I like to think of a leaf on a tree in a forest on a planet.

There’s no disagreement whatsoever within science that the cells that compose that leaf are alive. The tissues that those cells form are alive. The leaf as a whole is a living tissue. The tree we consider an organism that is also alive. We consider each of those layers to be alive. There’s no debate or controversy about that.

Once we go above the scale of the organism, this is where the debate begins. Can we think of the forest, the ecosystem, as alive as well? And then one more level higher. Can we think of the planet as alive?

My argument is, yes, that each of those levels, each of those scales is equally alive but not identical. And there are analogous processes that happen at each. But they’re not exactly the same.

Brian Resnick

What is the next plank of your argument?

Ferris Jabr

Life is also an engine of planetary evolution. The planet evolves over time dramatically. It is not exactly the same as standard Darwinian evolution through natural selection, but it is very much a type of evolution.

Organisms and their environments continually co-evolve. Each is profoundly changing the other.

This reciprocal transformation is responsible for many of the planet’s defining features: for our breathable atmosphere, our blue sky, our bountiful oceans, our fertile soils. This is all because of life and because of the way that life has changed the planetary environments. These are not default features of the planet. Life has created them over time.

Brian Resnick

What is the most stunning example of how life has actually changed the planet?

Ferris Jabr

In the beginning, Earth had essentially no free oxygen in its atmosphere, and the sky was probably a hazy orange. And when cyanobacteria began to oxygenate the atmosphere through the innovation of photosynthesis, the sky probably started shifting toward the blue part of the spectrum.

The entire chemistry of the planet changed. I mean, you suddenly had an oxygen-rich environment, whereas before it was an oxygen-poor environment. That changes absolutely everything.

Brian Resnick

Okay, so to get back to what you were saying before, it’s not that Earth evolves in the same way that organisms evolve. But it evolves with a different mechanism, is that right?

Ferris Jabr

Evolutionary biologists will say a planet cannot evolve because it doesn’t have a cohesive genome. There’s no genetic inheritance going on; there’s no sexual reproduction going on.

But there are analogous processes by which changes are passed down from generation to generation that are not genetically encoded.

If we think about a bunch of large mammals, they’re transforming their landscape by walking through it with their immense hefts. They’re tearing down vegetation. They’re digging in, uprooting things. They’re changing the landscape.

Those changes persist. And so their descendants now are evolving in a new environment changed by their predecessors. These environmental changes are not themselves genetically encoded, but they are being passed from generation to generation, and they are inevitably influencing the evolution that follows.

Brian Resnick

If a fundamental part of life is that it changes the world in which it exists, how are we different for accelerating the climate crisis? Because you look at the history of the Earth and you say, well, life has powerfully changed it. Who’s to say what we’re doing is necessarily not a natural process?

Ferris Jabr

It’s simultaneously humbling and empowering to recognize ourselves as simply the latest chapter in this long evolutionary saga of life changing the planet. It is a basic property of life to change its environment, and we’re not an exception to that.

But I do think there’s a major distinction between what our species has done and what has happened before in terms of the combined scale and speed and the variety of our changes to the planet. I don’t think there’s any species or creature before us that has changed the planet on such a large scale so quickly and in so many different ways simultaneously.

We have radically altered the atmosphere, the oceans, and the continents. We’ve done it in a couple of centuries. That’s a huge part of the reason for why the crisis we’re going through right now is a crisis. It has so much to do with the scale and the speed of it.

Brian Resnick

What’s part four of your argument?

Ferris Jabr

This co-evolution, on the whole, has amplified the planet’s capacity for self-regulation and enhanced Earth’s resilience. Earth has remained alive for, you know, around 4 billion years, despite repeated catastrophes of unfathomable scale, unlike anything that we have ever experienced in human history. We have to account for that resilience, for that incredible persistence through time.

It is not a deliberate thing. You know, it is not a conscious or collaborative thing. It is simply an inevitable physical process, just as evolution by natural selection is an inevitable physical process.

Even in the mass extinctions in Earth’s history, life recedes to its most fundamental and most resilient forms: microbes. And then life sprouts from there.

Brian Resnick

Are you sure you’re right about all this? Is the scientific community coming around to accept this notion that Earth is indeed alive?

Ferris Jabr

I mean, this book is my personal synthesis, an argument. You know, this is my viewpoint. This is how I have come to see the Earth. There are scientists who agree with me, but I would not say that this is the consensus of modern mainstream science. I think the statement that Earth is alive remains quite controversial and provocative. However, everything else we’ve been talking about, the co-evolution of life and environment, the fact that life has profoundly changed the planet. These are all well-accepted points.

Brian Resnick

Which part are you most likely wrong about? Or which part do you feel like has the most room for doubt?

Ferris Jabr

We do not have a precise, universally accepted definition of life. We haven’t explained it on the most fundamental level. Like 100 years from now, will we have a fundamental explanation for life that we’re missing right now? And if we do, will that make thinking of planets as alive defunct? And so, I think open-mindedness is fundamental to any scientific thinking or scientific process. And we have to be open to the idea that a century from now, or even sooner, all of this will be wrong.

And that’s part of what I find thrilling: We don’t have all of the answers yet. Right? These are incredibly challenging ideas and concepts that we are still working out. If we had figured it out, then we wouldn’t be talking about the Gaia hypothesis anymore. The Gaia would have been officially dead a long time ago. But I think the reason that it remains relevant and continues to be debated means that we just haven’t figured it out yet.

Brian Resnick

Why is it useful to think of the Earth as alive?

Ferris Jabr

There’s a massive difference between thinking of ourselves as living creatures that simply reside on a planet, that simply inhabit a planet, versus being a component of a much larger living entity. When we properly understand our role within the living Earth system, I think the moral urgency of the climate crisis really comes into focus.

All of a sudden it’s not just that, oh, the bad humans have harmed the environment and we need to do something about it. It’s that each of us is literally Earth animated, and we are one part of this much larger, living entity. It’s a realization that everything that we are all doing moment to moment, day to day, is affecting this larger living entity in some way.

Brian Resnick

So, the simple point that you’re making is that we are Earth, and don’t self-harm.

Ferris Jabr

Right, exactly.

Read the full story here.
Photos courtesy of

Want to Lower Chemical Exposures in Pregnancy? Quit Nail Polish, Makeup and Hair Dye

By Carole Tanzer Miller HealthDay ReporterTUESDAY, Nov. 19, 2024 (HealthDay News) -- Women who won't leave the house without makeup or a spritz of...

By Carole Tanzer Miller HealthDay ReporterTUESDAY, Nov. 19, 2024 (HealthDay News) -- Women who won't leave the house without makeup or a spritz of hairspray may want to think twice about those habits when they're pregnant or breastfeeding.New research links these and other personal care products, including hair dyes, fragrances, lotions, moisturizers and nail polishes to higher levels of so-called PFAS "forever chemicals" that are harmful to health. Researchers report in the November issue of the journal Environment International that they found significantly higher levels of these synethetic chemicals -- called per- and polyfluoroalkyl substances (PFAS) -- in the blood and breast milk of women who used the products during pregnancy. Because they resist water, oil and heat, PFAS have been used in consumer products and industry since the mid-20th century, researchers said in background notes. Over the years, they have been linked to many health issues, including heart problems, liver disease and cancers.The new study suggests that exposure to PFAS during pregnancy could lead to variety of health issues for babies. They include preterm birth and lower birth weight, as well as neurodevelopmental disorders -- even a poorer response to vaccines, said study author Amber Hall, a postdoctoral research associate at Brown University School of Public Health in Rhode Island."People who are concerned about their exposure to these chemicals during pregnancy or while breastfeeding may benefit from cutting back on personal care products during those times," Hall said in a university news release.Her team analyzed data from a study conducted between 2008 and 2011 of 2,000 pregnant women in 10 Canadian cities. The data included measurements of PFAS levels in the blood at six to 13 weeks of gestation and in breast milk after the birth. Participants self-reported how often they used eight types of products during their first and third trimesters, as well as one to two days postpartum and then again, at two to 10 weeks after giving birth.At all points, higher use of nail care products, fragrances, makeup, hair sprays, gels or dyes was associated with higher levels of PFAS in the blood. Results for third-trimester use and breast-milk concentrations were similar.By way of example, researchers noted that pregnant women who wore makeup every day in their first and third trimesters had higher levels of PFAS than those who didn't. Those who used permanent hair color one or two days after delivery had 16% to 18% higher levels of PFAS in their milk. But Hall cautioned that the study probably underestimated the extent of PFAS exposure. It examined only four types of forever chemicals among thousands deployed in industry and commerce.She conducted the investigation with the director of children's environmental health at Brown, Joseph Braun, who has studied health effect of PFAS chemicals for more than a decade."Not only do studies like these help people assess how their product choices may affect their personal risk, but they can also help us show how these products could have population-level effects," he said. "And that makes the case for product regulation and government action."SOURCE: Brown University, news release, Nov. 12, 2024Copyright © 2024 HealthDay. All rights reserved.

Turning automotive engines into modular chemical plants to make green fuels

The MIT spinout Emvolon is placing its repurposed engines next to methane sources, to generate greener methanol and other chemicals.

Reducing methane emissions is a top priority in the fight against climate change because of its propensity to trap heat in the atmosphere: Methane’s warming effects are 84 times more potent than CO2 over a 20-year timescale.And yet, as the main component of natural gas, methane is also a valuable fuel and a precursor to several important chemicals. The main barrier to using methane emissions to create carbon-negative materials is that human sources of methane gas — landfills, farms, and oil and gas wells — are relatively small and spread out across large areas, while traditional chemical processing facilities are huge and centralized. That makes it prohibitively expensive to capture, transport, and convert methane gas into anything useful. As a result, most companies burn or “flare” their methane at the site where it’s emitted, seeing it as a sunk cost and an environmental liability.The MIT spinout Emvolon is taking a new approach to processing methane by repurposing automotive engines to serve as modular, cost-effective chemical plants. The company’s systems can take methane gas and produce liquid fuels like methanol and ammonia on-site; these fuels can then be used or transported in standard truck containers."We see this as a new way of chemical manufacturing,” Emvolon co-founder and CEO Emmanuel Kasseris SM ’07, PhD ’11 says. “We’re starting with methane because methane is an abundant emission that we can use as a resource. With methane, we can solve two problems at the same time: About 15 percent of global greenhouse gas emissions come from hard-to-abate sectors that need green fuel, like shipping, aviation, heavy heavy-duty trucks, and rail. Then another 15 percent of emissions come from distributed methane emissions like landfills and oil wells.”By using mass-produced engines and eliminating the need to invest in infrastructure like pipelines, the company says it’s making methane conversion economically attractive enough to be adopted at scale. The system can also take green hydrogen produced by intermittent renewables and turn it into ammonia, another fuel that can also be used to decarbonize fertilizers.“In the future, we’re going to need green fuels because you can’t electrify a large ship or plane — you have to use a high-energy-density, low-carbon-footprint, low-cost liquid fuel,” Kasseris says. “The energy resources to produce those green fuels are either distributed, as is the case with methane, or variable, like wind. So, you cannot have a massive plant [producing green fuels] that has its own zip code. You either have to be distributed or variable, and both of those approaches lend themselves to this modular design.”From a “crazy idea” to a companyKasseris first came to MIT to study mechanical engineering as a graduate student in 2004, when he worked in the Sloan Automotive Lab on a report on the future of transportation. For his PhD, he developed a novel technology for improving internal combustion engine fuel efficiency for a consortium of automotive and energy companies, which he then went to work for after graduation.Around 2014, he was approached by Leslie Bromberg ’73, PhD ’77, a serial inventor with more than 100 patents, who has been a principal research engineer in MIT’s Plasma Science and Fusion Center for nearly 50 years.“Leslie had this crazy idea of repurposing an internal combustion engine as a reactor,” Kasseris recalls. “I had looked at that while working in industry, and I liked it, but my company at the time thought the work needed more validation.”Bromberg had done that validation through a U.S. Department of Energy-funded project in which he used a diesel engine to “reform” methane — a high-pressure chemical reaction in which methane is combined with steam and oxygen to produce hydrogen. The work impressed Kasseris enough to bring him back to MIT as a research scientist in 2016.“We worked on that idea in addition to some other projects, and eventually it had reached the point where we decided to license the work from MIT and go full throttle,” Kasseris recalls. “It’s very easy to work with MIT’s Technology Licensing Office when you are an MIT inventor. You can get a low-cost licensing option, and you can do a lot with that, which is important for a new company. Then, once you are ready, you can finalize the license, so MIT was instrumental.”Emvolon continued working with MIT’s research community, sponsoring projects with Professor Emeritus John Heywood and participating in the MIT Venture Mentoring Service and the MIT Industrial Liaison Program.An engine-powered chemical plantAt the core of Emvolon’s system is an off-the-shelf automotive engine that runs “fuel rich” — with a higher ratio of fuel to air than what is needed for complete combustion.“That’s easy to say, but it takes a lot of [intellectual property], and that’s what was developed at MIT,” Kasseris says. “Instead of burning the methane in the gas to carbon dioxide and water, you partially burn it, or partially oxidize it, to carbon monoxide and hydrogen, which are the building blocks to synthesize a variety of chemicals.”The hydrogen and carbon monoxide are intermediate products used to synthesize different chemicals through further reactions. Those processing steps take place right next to the engine, which makes its own power. Each of Emvolon’s standalone systems fits within a 40-foot shipping container and can produce about 8 tons of methanol per day from 300,000 standard cubic feet of methane gas.The company is starting with green methanol because it’s an ideal fuel for hard-to-abate sectors such as shipping and heavy-duty transport, as well as an excellent feedstock for other high-value chemicals, such as sustainable aviation fuel. Many shipping vessels have already converted to run on green methanol in an effort to meet decarbonization goals.This summer, the company also received a grant from the Department of Energy to adapt its process to produce clean liquid fuels from power sources like solar and wind.“We’d like to expand to other chemicals like ammonia, but also other feedstocks, such as biomass and hydrogen from renewable electricity, and we already have promising results in that direction” Kasseris says. “We think we have a good solution for the energy transition and, in the later stages of the transition, for e-manufacturing.”A scalable approachEmvolon has already built a system capable of producing up to six barrels of green methanol a day in its 5,000 square-foot headquarters in Woburn, Massachusetts.“For chemical technologies, people talk about scale up risk, but with an engine, if it works in a single cylinder, we know it will work in a multicylinder engine,” Kasseris says. “It’s just engineering.”Last month, Emvolon announced an agreement with Montauk Renewables to build a commercial-scale demonstration unit next to a Texas landfill that will initially produce up to 15,000 gallons of green methanol a year and later scale up to 2.5 million gallons. That project could be expanded tenfold by scaling across Montauk’s other sites.“Our whole process was designed to be a very realistic approach to the energy transition,” Kasseris says. “Our solution is designed to produce green fuels and chemicals at prices that the markets are willing to pay today, without the need for subsidies. Using the engines as chemical plants, we can get the capital expenditure per unit output close to that of a large plant, but at a modular scale that enables us to be next to low-cost feedstock. Furthermore, our modular systems require small investments — of $1 to 10 million — that are quickly deployed, one at a time, within weeks, as opposed to massive chemical plants that require multiyear capital construction projects and cost hundreds of millions.”

The US no longer supports capping plastic production in UN treaty

Environmental advocates understand the announcement as a reversal, calling it “absolutely devastating.”

The Biden administration has backtracked from supporting a cap on plastic production as part of the United Nations’ global plastics treaty. According to representatives from five environmental organizations, White House staffers told representatives of advocacy groups in a closed-door meeting last week that they did not see mandatory production caps as a viable “landing zone” for INC-5, the name for the fifth and final round of plastics treaty negotiations set to take place later this month in Busan, South Korea. Instead, the staffers reportedly said United States delegates would support a “flexible” approach in which countries set their own voluntary targets for reducing plastic production. This represents a reversal of what the same groups were told at a similar briefing held in August, when Biden administration representatives raised hopes that the U.S. would join countries like Norway, Peru, and the United Kingdom in supporting limits on plastic production.  Following the August meeting, Reuters reported that the U.S. “will support a global treaty calling for a reduction in how much new plastic is produced each year,” and the Biden administration confirmed that Reuters’ reporting was “accurate.”  After the more recent briefing, a spokesperson for the White House Council on Environmental Quality told Grist that, while U.S. negotiators have endorsed the idea of a “‘North Star’ aspirational global goal” to reduce plastic production, they “do not see this as a production cap and do not support such a cap.” “We believe there are different paths available for achieving reductions in plastic production and consumption,” the spokesperson said. “We will be flexible going into INC-5 on how to achieve that and are optimistic that we can prevail with a strong instrument that sends these market signals for change.”  Jo Banner, co-founder and co-director of The Descendants Project, a nonprofit advocating for fenceline communities in Louisiana’s “Cancer Alley,” said the announcement was a “jolt.” “I thought we were on the same page in terms of capping plastic and reducing production,” she said. “But it was clear that we just weren’t.” Frankie Orona, executive director of the nonprofit Society of Native Nations, which advocates for environmental justice and the preservation of Indigenous cultures, described the news as “absolutely devastating.” He added, “Two hours in that meeting felt like it was taking two days of my life.” Delegates follow the day’s proceedings at the third round of negotiations over a global plastics treaty in Nairobi, Kenya. James Wakibia / SOPA Images / LightRocket via Getty Images The situation speaks to a central conflict that has emerged from talks over the treaty, which the U.N. agreed to negotiate two years ago to “end plastic pollution.” Delegates haven’t agreed on whether the pact should focus on managing plastic waste — through things like ocean cleanups and higher recycling rates — or on tamping down the growing rate of plastic production. Nearly 70 countries, along with scientists and environmental groups, support the latter. They say it’s futile to mop up plastic litter while more and more of it keeps getting made. But a vocal contingent of oil-exporting countries has pushed for a lower-ambition treaty, using a consensus-based voting norm to slow-walk the negotiations. Besides leaving out production limits, those countries also want the treaty to allow for voluntary national targets, rather than binding global rules. Exactly which policies the U.S. will now support isn’t entirely clear. While the White House spokesperson told Grist that it wants to ensure the treaty “addresses … the supply of primary plastic polymers,” this could mean a whole host of things, including a tax on plastic production or bans on individual plastic products. These kinds of so-called market instruments could drive down demand for more plastic, but with far less certainty than a quantitative production limit. Bjorn Beeler, executive director of the nonprofit International Pollutants Elimination Network, noted that the U.S. could technically “address” the supply of plastics by reducing the industry’s projected growth rates — which would still allow the amount of manufactured plastic to continue increasing every year. “What the U.S. has said is extremely vague,” he said. “They have not been a leading actor to move the treaty into something meaningful.” To the extent that the White House’s latest announcement was a clarification and not an outright reversal — as staffers reportedly insisted was the case — Banner said the Biden administration should have made their position clearer months ago, right after the August meeting. “In August, we were definitely saying ‘capping,’ and it was never corrected,” she said. “If there was a misunderstanding, then it should have been corrected a long time ago.” Another apparent change in the U.S.’s strategy is on chemicals used in plastics. Back in August, the White House confirmed via Reuters’ reporting that it supported creating lists of plastic-related chemicals to be banned or restricted. Now, negotiators will back lists that include plastic products containing those chemicals. Environmental groups see this approach as less effective, since there are so many kinds of plastic products and because product manufacturers do not always have complete information about the chemicals used by their suppliers. Read Next Plastic chemicals are inescapable — and they’re messing with our hormones Joseph Winters Orona said focusing on products would push the conversation downstream, away from petrochemical refineries and plastics manufacturing facilities that disproportionately pollute poor communities of color. “It’s so dismissive, it’s so disrespectful,” he said. “It just made you want to grab a pillow and scream into the pillow and shed a few tears for your community.” At the next round of treaty talks, environmental groups told Grist that the U.S. should “step aside.” Given the high likelihood that the incoming Trump administration will not support the treaty and that the Republican-controlled Senate will not ratify it, some advocates would like to see the high-ambition countries focus less on winning over U.S. support and more on advancing the most ambitious version of the treaty possible. “We hope that the rest of the world moves on,” said a spokesperson for the nonprofit Break Free From Plastic, vesting hope in the EU, small island developing states, and a coalition of African countries, among others.  Viola Waghiyi, environmental health and justice program director for the nonprofit Alaska Community Action on Toxics, is a tribal citizen of the Native Village of Savoonga, on the island of Sivuqaq off the state’s western coast. She connected a weak plastics treaty to the direct impacts her island community is facing, including climate change (to which plastics production contributes), microplastic pollution in the Arctic Ocean that affects its marine life, and atmospheric dynamics that dump hazardous plastic chemicals in the far northern hemisphere. The U.S. “should be making sure that measures are in place to protect the voices of the most vulnerable,” she said, including Indigenous peoples, workers, waste pickers, and future generations. As a Native grandmother, she specifically raised concerns about endocrine-disrupting plastic chemicals that could affect children’s neurological development. “How can we pass on our language, our creation stories, our songs and dances, our traditions and cultures, if our children can’t learn?” This story was originally published by Grist with the headline The US no longer supports capping plastic production in UN treaty on Nov 18, 2024.

Yorkshire town may bring first ‘forever chemicals’ legal case in UK

Residents claim contamination from Angus Fire factory has left them trapped and unable to sell their homesResidents in the UK town with the country’s highest identified concentration of “forever chemicals” have instructed lawyers to investigate the possibility of a first-of-its-kind legal claim against the firefighting foam manufacturer located in the centre of Bentham.In May this year, an investigation by the Ends Report and the Guardian revealed that the rural North Yorkshire town is the most PFAS-polluted place known to exist in the UK. The town is home to the firefighting foam manufacturer Angus Fire. Continue reading...

Residents in the UK town with the country’s highest identified concentration of “forever chemicals” have instructed lawyers to investigate the possibility of a first-of-its-kind legal claim against the firefighting foam manufacturer located in the centre of Bentham.In May this year, an investigation by the Ends Report and the Guardian revealed that the rural North Yorkshire town is the most PFAS-polluted place known to exist in the UK. The town is home to the firefighting foam manufacturer Angus Fire.PFAS, short for per- and polyfluoroalkyl substances and commonly known as “forever chemicals” owing to their persistence in the environment, are a family of about 10,000 chemicals that have been linked to a wide range of serious illnesses, including certain cancers. They are used in many consumer products, from frying pans to waterproof coats, but one of their most common uses is in firefighting foams.The Law firm Leigh Day has informed Angus Fire that, acting on behalf of residents, it has been instructed to investigate a case against the firm as a result of “alleged PFAS pollution in Bentham”.A spokesperson for Angus Fire said: “We have been advised by Leigh Day that it is under instruction to investigate a potential claim on behalf of one residency. We have not received notice of any legal action.”In the past 25 years, nearly 10,000 court cases have been filed in the US alleging harm from PFAS exposure. Some of these cases have already resulted in multi-billion dollar settlements. The case against Angus Fire would be be the first ever PFAS-related legal case in the UK.Charlotte Armstrong, a senior associate solicitor at Leigh Day, said: “Angus Fire state that they no longer manufacture or test any PFAS-containing foam products in Bentham, but that doesn’t help the people of Bentham. PFAS are ‘forever chemicals’, and unfortunately that means that the chemical pollution in the area is anything but a historic issue. Our clients and the wider community in Bentham are entitled to fully understand the extent of PFAS pollution in their community, so that those allegedly responsible can be held to account in terms of financial compensation and remediation.”After the initial investigation, Bentham town council asked Angus Fire to test the environment on Duke Street – a narrow residential road next to the factory – for PFAS.The test results, which were made available in October, revealed that soil adjacent to gardens on Duke Street was contaminated with elevated levels of PFAS. The land is owned by Angus Fire and is made available for use by residents, who use it to grow food. Residents were advised by Angus Fire to wash and peel vegetables grown on the land, to clean their homes of dust regularly, and to remove shoes before entering their homes.Residents of Duke Street have said that since finding out about the contamination they felt “trapped”.“At any point of buying a house, you would want the option to sell it, depending on what you want to do in your life,” said one person, who asked to remain anonymous. “At the moment, that would be a significant challenge. And with the uncertainty over how long it will take to remediate the land, we are essentially trapped in this situation.”Angus Fire has offered residents on Duke Street a series of financial “goodwill gestures”.A spokesperson for Angus Fire said it had “presented a number of options to residents whose properties border the legacy foam manufacturing and testing areas, which we believe could offer a constructive way forward and which also underscores our commitment to addressing the situation responsibly.“We recognise the concerns about potential environmental impacts from historic operations at our facility and regret the inconvenience and worry that this has caused.”skip past newsletter promotionThe planet's most important stories. Get all the week's environment news - the good, the bad and the essentialPrivacy Notice: Newsletters may contain info about charities, online ads, and content funded by outside parties. For more information see our Privacy Policy. We use Google reCaptcha to protect our website and the Google Privacy Policy and Terms of Service apply.after newsletter promotionDuke Street residents have expressed concern about the risk of the contamination to their health.Dr Anna Watson, the director of policy and advocacy at the Chem Trust charity, said that while it was welcome that Angus Fire was “admitting responsibility for the irreversible PFAS pollution near their site in Bentham”, it was “heartbreaking to think of people being uprooted from their community, as well as having to deal with the anxiety of potential long-term health impacts from these toxic chemicals”.“The UK government needs to take urgent action to ban the use and manufacture of these chemicals as a group and be at the forefront of a global PFAS-free economy,” she said.Residents said they had had no correspondence with local or government officials over the contamination.An Environment Agency spokesperson said: “We are working with North Yorkshire council and looking into historic PFAS contamination from the Angus Fire site. Our primary focus is to assess the risk to the environment and provide support to our partners on risk to residents.”North Yorkshire council’s assistant director for regulatory services, Callum McKeon, said: “We continue to work with partner agencies to assess historic PFAS contamination from the Angus Fire site at Bentham. Our key priority is to identify and address the risk to residents and continue to support our partner agencies with their ongoing investigations.”The Angus Fire spokesperson said: “Angus continues to work closely with independent industry-leading environmental consultants and in cooperation with our UK regulator, the Environment Agency, to better characterise the Bentham site and surrounding areas. These further investigations will help us better understand the extent of any PFAS contamination and assist in determining the remediation required.”

New report: Dow Freeport chemical plant leads nation in wastewater polluting

The Dow Freeport petrochemical plant in Brazoria County was found to be the top polluter of three toxic chemicals, causing downstream health risks to nearby communities of color and low-income households.

Michael StravatoThe Dow chemical plant along the Brazos River in Freeport, Texas.The Dow petrochemical plant in Freeport, Texas was found to be the worst wastewater polluter in the nation, according to a new report. That's one of the findings of the Environmental Integrity Project's (EIP) latest study entitled, "Plastic's Toxic River," which was released Thursday afternoon. The report, which looks into data from 2021 to 2023, found that dozens of petrochemical plants — factories that use oil and gas to make plastics, industrial chemicals and pesticides — have been breaking federal regulations without substantial, if any, repercussions. Among the 70 petrochemical plants the EIP reported on, 58 were found to have violated at least one wastewater regulation. Only eight plants have been penalized, with the average fine being $266. Krisen Schlemmer, a senior legal director at Bayou City Waterkeeper, a Houston-based environmental protection nonprofit, emphasized in a webinar that when it comes to violating wastewater regulations, "some of the worst actors are here in our backyard in Texas." Among the plants that have violated the Clean Waters Act, 28 are in Texas, leaving only two plants in the state that have not broken federal wastewater regulations. Local environmental experts and the report's authors point to the Environmental Protection Agency's lax regulations for why plants have continued to dump dangerous — and at high amounts lethal — chemicals into waterways. Jen Duggan, the EIP’s executive director, said it’s communities of color and low-income households that are the most at risk. "The unchecked pollution from these plants hurts peoples' livelihoods and quality of life, it puts our health at risk," Duggan said. "It puts our health at risk, and it shifts the cost of cleaning up this pollution to communities instead of the companies who are creating it.” The Dow plant in Brazoria County was the report's top wastewater polluter of three toxic chemicals: dioxin, nitrogen and phosphorus, and dioxin. Dioxin is a potent and toxic chemical that has been linked to cancer, reproductive and developmental problems, hormone imbalances and weakened immune systems. Just one drop of dioxin is enough to contaminate 44 swimming pools, according to the EPA. Yet, there aren't federal limits to the amount of dioxins plastics and chemical plants can release into waterways. The Dow Freeport plant released more than 800 grams of dioxins into the Brazos River in 2022. Additionally, according to the report, in 2023 it released more than 3.3 million pounds of nitrogen and nearly 700,000 pounds of phosphorus into the river. Schlemmer said both chemicals "degrade water quality, making it difficult for life to survive in the water. Yet, these are exactly the things that the Dows Freeport facility was found to have discharged into the Brazos River, which is upstream from popular fishing spots as well as a surfside beach." To encourage tougher regulations over petrochemical plants, the report's authors made five recommendations to protect communities and wildlife: Require the use of modern wastewater pollution tracking technology Prohibit dumping plastic pellets into waterways Update and improve monitoring requirements in permit applications and permits Increase enforcement of Clean Water Act permit violations and impose penalties Improve permit transparency and recordkeeping

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.