Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Is the Earth itself a giant living creature?

News Feed
Monday, April 22, 2024

Rachel Victoria Hillis for Vox An old, much-ridiculed hypothesis said yes. It’s time to take it seriously. In the 1970s, chemist James Lovelock and microbiologist Lynn Margulis put forth a bold theory: The Earth is a giant living organism. When a mammal is hot, it sweats to cool itself off. If you nick your skin with a knife, the skin will scab and heal. Lovelock and Margulis argued that our planet has similar processes of self-regulation, which arguably, make it seem like the Earth itself is alive. The idea wasn’t unprecedented in human history. “The fundamental concept of a living world is ancient,” says Ferris Jabr, a science journalist and author of the upcoming book Becoming Earth: How Our Planet Came to Life. The book explores all the ways life has shaped our physical world and, in doing so, inevitably revisits the question “Is the Earth alive?” Lovelock and Margulis called the idea “the Gaia Hypothesis” — named after the ancient Greek goddess of the Earth. It was openly mocked by many in mainstream Western science. “For many decades, the Gaia hypothesis was considered kind of this fringe sort of woo-woo idea,” Jabr says. “Because for biologists,” Jabr says, life is a specific thing. “It is typically thought of as an organism that is a product of Darwinian evolution by natural selection. And Earth as a planet does not meet those criteria.” It didn’t help that the original articulation of Gaia granted Earth a certain degree of sentience. The hypothesis argued “all of the living organisms on Earth are collaborating to deliberately create a climate that is suitable for life,” as Jabr says. But yet, this idea has persisted, for a few reasons. Scientists have never been able to precisely define what life is. So, it’s been hard to dismiss Gaia completely. The Gaia hypothesis has also evolved over the years. Later iterations deemphasized that life was “collaborating” to transform the Earth, Jabr explains. Which still leaves a lot to be explored: Certainly living things don’t need to be thought of as conscious, or have agency, to be considered alive. Consider the clam, which lacks a central nervous system. Jabr found in the years since Gaia was first introduced, scientists have uncovered more connections between biology, ecology, and geology, which make the boundaries between these disciplines appear even more fuzzy. The Amazon rainforest essentially “summons” its own rain, as Jabr explains in his book. They learned how life is involved in the process that generated the continents. Life plays a role in regulating Earth’s temperature. They’ve learned that just about everywhere you look on Earth, you find life influencing the physical properties of our planet. In reporting his book, Jabr comes to the conclusion that not only is the Earth indeed a living creature, but thinking about it in such a way might help inspire action in dealing with the climate crisis. Brian Resnick spoke to Jabr for an episode of Unexplainable, Vox’s podcast that explores scientific mysteries, unanswered questions, and all the things we learn by diving into the unknown. You can listen to the full conversation here. This interview has been edited for length and clarity. Brian Resnick Do you think the Earth is alive? Ferris Jabr I do. I think Earth is alive. We can think of Earth as a genuine living entity, in a meaningful sense, and in a scientific sense. There are four parts to the argument that substantiate that statement. Brian Resnick What’s the first? Ferris Jabr Life isn’t just on Earth. It literally came out of Earth. It is literally part of Earth. It is Earth. All of the matter that we refer to as life is Earth animated — that’s how I come to think about it. If you accept that, then at a bare minimum, you have to accept as a scientific fact that the surface of the planet is genuinely alive, because it is matter that has become animated. Brian Resnick Earth animated? What do you mean by that? Ferris Jabr Every single living organism is literally made of Earth. All of its constituent elements and components are parts of the planet. We all come from the planet. We all return to the planet. It’s just a big cycle. And so life, the biological matter on the planet, is literally the matter of the planet, animated. It is living matter. Imagine a vast beach and sandcastles and other sculptures spontaneously emerge from the sand. They are still made of sand, right? They’re not suddenly divorced from the beach just because they’ve arisen from the beach. Those castles and sculptures are still literally the beach. And I think it’s the same with life and Earth. Brian Resnick So, the physical components of Earth are the material of life. And so distinguishing these two — Earth and life — seems silly because they comprise each other? Ferris Jabr The more you think about this, the more the boundaries dissolve. Every layer of the planet that we’ve been able to access, we find life there. And in the deepest mines that we have dug, we continue to find microbes and sometimes even more complex organisms like nematodes, these tiny, worm-like creatures. Brian Resnick So all life contains Earth, and Earth contains life? Ferris Jabr There are components of the Earth that are not alive in any way. The center of the planet, it’s all molten rock and there might be some solid metal in the core. But think about a redwood tree: It is mostly dead wood in terms of its volume and mass. It is mostly nonliving tissue. And then a little bit of tissue that is laced with living cells. So, you know, most complex multicellular living entities are a jumble of the animate and inanimate. Earth is not unusual in that way. Brian Resnick What is part two of your argument? Ferris Jabr All these organisms [on Earth], they give Earth a kind of anatomy and physiology. Life dramatically increases the planet’s capacity to absorb, store, and transform energy, to exchange gases, and to perform complex chemical reactions. Brian Resnick What’s a good example of this? Ferris Jabr You can think of all of the photosynthetic life on the planet acting in concert. It’s not that they’re deliberately collaborating to do something, but they’re all doing their own thing at the same time. NASA has made these amazing videos and animations and they’ve literally called them “Earth breathing,” because you can see how the levels of carbon dioxide and oxygen in the atmosphere fluctuate with the seasons. The amount of vegetation that rings the continents, especially in the Northern Hemisphere, in the mid-latitudes, it changes dramatically with the seasons. It has a sinuous rhythm. It looks like a pulse or like breathing. Brian Resnick So, are you saying something like all of the algae or plankton in the ocean are generating this together? … Is that kind of like how all of the cells in my lungs are working together to exchange gases? Or is that not quite the right way to think about it? Ferris Jabr I think we have to be careful with making too direct a comparison. You as an organism are a product of evolution by natural selection. Your structure, your anatomy is something that was written into your genome. That’s not how the Earth system formed. Brian Resnick I’m realizing a key to this conversation is what you just corrected me on. When we’re discussing this notion about the “Earth being alive,” we’re not suggesting it’s not alive in the same way you and I are. But there’s these equivalent processes that look very similar to the way my body maintains homeostasis, for example. It’s not like the Earth is exchanging gases and doing metabolism-like things in the way I’ve been evolved to. It’s not achieving homeostasis the way you or I do. But yet it is doing something that seems analogous. Is that the kind of thing that you’re arguing here, overall? Ferris Jabr Absolutely. When we’re looking at the planet, we see life-like qualities, things that resemble the characteristics of the organism, which is the most familiar life form to us. But it is not exactly the same. It is still genuinely alive, in my opinion, but is not exactly an organism. Life is a phenomenon that occurs at multiple scales. The way I think of it is that it’s not identical at all of those scales, but it rhymes and there are analogies between each of those scales. I like to think of a leaf on a tree in a forest on a planet. There’s no disagreement whatsoever within science that the cells that compose that leaf are alive. The tissues that those cells form are alive. The leaf as a whole is a living tissue. The tree we consider an organism that is also alive. We consider each of those layers to be alive. There’s no debate or controversy about that. Once we go above the scale of the organism, this is where the debate begins. Can we think of the forest, the ecosystem, as alive as well? And then one more level higher. Can we think of the planet as alive? My argument is, yes, that each of those levels, each of those scales is equally alive but not identical. And there are analogous processes that happen at each. But they’re not exactly the same. Brian Resnick What is the next plank of your argument? Ferris Jabr Life is also an engine of planetary evolution. The planet evolves over time dramatically. It is not exactly the same as standard Darwinian evolution through natural selection, but it is very much a type of evolution. Organisms and their environments continually co-evolve. Each is profoundly changing the other. This reciprocal transformation is responsible for many of the planet’s defining features: for our breathable atmosphere, our blue sky, our bountiful oceans, our fertile soils. This is all because of life and because of the way that life has changed the planetary environments. These are not default features of the planet. Life has created them over time. Brian Resnick What is the most stunning example of how life has actually changed the planet? Ferris Jabr In the beginning, Earth had essentially no free oxygen in its atmosphere, and the sky was probably a hazy orange. And when cyanobacteria began to oxygenate the atmosphere through the innovation of photosynthesis, the sky probably started shifting toward the blue part of the spectrum. The entire chemistry of the planet changed. I mean, you suddenly had an oxygen-rich environment, whereas before it was an oxygen-poor environment. That changes absolutely everything. Brian Resnick Okay, so to get back to what you were saying before, it’s not that Earth evolves in the same way that organisms evolve. But it evolves with a different mechanism, is that right? Ferris Jabr Evolutionary biologists will say a planet cannot evolve because it doesn’t have a cohesive genome. There’s no genetic inheritance going on; there’s no sexual reproduction going on. But there are analogous processes by which changes are passed down from generation to generation that are not genetically encoded. If we think about a bunch of large mammals, they’re transforming their landscape by walking through it with their immense hefts. They’re tearing down vegetation. They’re digging in, uprooting things. They’re changing the landscape. Those changes persist. And so their descendants now are evolving in a new environment changed by their predecessors. These environmental changes are not themselves genetically encoded, but they are being passed from generation to generation, and they are inevitably influencing the evolution that follows. Brian Resnick If a fundamental part of life is that it changes the world in which it exists, how are we different for accelerating the climate crisis? Because you look at the history of the Earth and you say, well, life has powerfully changed it. Who’s to say what we’re doing is necessarily not a natural process? Ferris Jabr It’s simultaneously humbling and empowering to recognize ourselves as simply the latest chapter in this long evolutionary saga of life changing the planet. It is a basic property of life to change its environment, and we’re not an exception to that. But I do think there’s a major distinction between what our species has done and what has happened before in terms of the combined scale and speed and the variety of our changes to the planet. I don’t think there’s any species or creature before us that has changed the planet on such a large scale so quickly and in so many different ways simultaneously. We have radically altered the atmosphere, the oceans, and the continents. We’ve done it in a couple of centuries. That’s a huge part of the reason for why the crisis we’re going through right now is a crisis. It has so much to do with the scale and the speed of it. Brian Resnick What’s part four of your argument? Ferris Jabr This co-evolution, on the whole, has amplified the planet’s capacity for self-regulation and enhanced Earth’s resilience. Earth has remained alive for, you know, around 4 billion years, despite repeated catastrophes of unfathomable scale, unlike anything that we have ever experienced in human history. We have to account for that resilience, for that incredible persistence through time. It is not a deliberate thing. You know, it is not a conscious or collaborative thing. It is simply an inevitable physical process, just as evolution by natural selection is an inevitable physical process. Even in the mass extinctions in Earth’s history, life recedes to its most fundamental and most resilient forms: microbes. And then life sprouts from there. Brian Resnick Are you sure you’re right about all this? Is the scientific community coming around to accept this notion that Earth is indeed alive? Ferris Jabr I mean, this book is my personal synthesis, an argument. You know, this is my viewpoint. This is how I have come to see the Earth. There are scientists who agree with me, but I would not say that this is the consensus of modern mainstream science. I think the statement that Earth is alive remains quite controversial and provocative. However, everything else we’ve been talking about, the co-evolution of life and environment, the fact that life has profoundly changed the planet. These are all well-accepted points. Brian Resnick Which part are you most likely wrong about? Or which part do you feel like has the most room for doubt? Ferris Jabr We do not have a precise, universally accepted definition of life. We haven’t explained it on the most fundamental level. Like 100 years from now, will we have a fundamental explanation for life that we’re missing right now? And if we do, will that make thinking of planets as alive defunct? And so, I think open-mindedness is fundamental to any scientific thinking or scientific process. And we have to be open to the idea that a century from now, or even sooner, all of this will be wrong. And that’s part of what I find thrilling: We don’t have all of the answers yet. Right? These are incredibly challenging ideas and concepts that we are still working out. If we had figured it out, then we wouldn’t be talking about the Gaia hypothesis anymore. The Gaia would have been officially dead a long time ago. But I think the reason that it remains relevant and continues to be debated means that we just haven’t figured it out yet. Brian Resnick Why is it useful to think of the Earth as alive? Ferris Jabr There’s a massive difference between thinking of ourselves as living creatures that simply reside on a planet, that simply inhabit a planet, versus being a component of a much larger living entity. When we properly understand our role within the living Earth system, I think the moral urgency of the climate crisis really comes into focus. All of a sudden it’s not just that, oh, the bad humans have harmed the environment and we need to do something about it. It’s that each of us is literally Earth animated, and we are one part of this much larger, living entity. It’s a realization that everything that we are all doing moment to moment, day to day, is affecting this larger living entity in some way. Brian Resnick So, the simple point that you’re making is that we are Earth, and don’t self-harm. Ferris Jabr Right, exactly.

An illustration of a land mass is covered in wildlife, lush greenery and people all interacting. Blue water and sea life surrounds.
Rachel Victoria Hillis for Vox

An old, much-ridiculed hypothesis said yes. It’s time to take it seriously.

In the 1970s, chemist James Lovelock and microbiologist Lynn Margulis put forth a bold theory: The Earth is a giant living organism.

When a mammal is hot, it sweats to cool itself off. If you nick your skin with a knife, the skin will scab and heal. Lovelock and Margulis argued that our planet has similar processes of self-regulation, which arguably, make it seem like the Earth itself is alive.

The idea wasn’t unprecedented in human history. “The fundamental concept of a living world is ancient,” says Ferris Jabr, a science journalist and author of the upcoming book Becoming Earth: How Our Planet Came to Life. The book explores all the ways life has shaped our physical world and, in doing so, inevitably revisits the question “Is the Earth alive?”

Lovelock and Margulis called the idea “the Gaia Hypothesis” — named after the ancient Greek goddess of the Earth. It was openly mocked by many in mainstream Western science. “For many decades, the Gaia hypothesis was considered kind of this fringe sort of woo-woo idea,” Jabr says. “Because for biologists,” Jabr says, life is a specific thing. “It is typically thought of as an organism that is a product of Darwinian evolution by natural selection. And Earth as a planet does not meet those criteria.”

It didn’t help that the original articulation of Gaia granted Earth a certain degree of sentience. The hypothesis argued “all of the living organisms on Earth are collaborating to deliberately create a climate that is suitable for life,” as Jabr says. But yet, this idea has persisted, for a few reasons. Scientists have never been able to precisely define what life is. So, it’s been hard to dismiss Gaia completely.

The Gaia hypothesis has also evolved over the years. Later iterations deemphasized that life was “collaborating” to transform the Earth, Jabr explains. Which still leaves a lot to be explored: Certainly living things don’t need to be thought of as conscious, or have agency, to be considered alive. Consider the clam, which lacks a central nervous system.

Jabr found in the years since Gaia was first introduced, scientists have uncovered more connections between biology, ecology, and geology, which make the boundaries between these disciplines appear even more fuzzy. The Amazon rainforest essentially “summons” its own rain, as Jabr explains in his book. They learned how life is involved in the process that generated the continents. Life plays a role in regulating Earth’s temperature. They’ve learned that just about everywhere you look on Earth, you find life influencing the physical properties of our planet.

In reporting his book, Jabr comes to the conclusion that not only is the Earth indeed a living creature, but thinking about it in such a way might help inspire action in dealing with the climate crisis.

Brian Resnick spoke to Jabr for an episode of Unexplainable, Vox’s podcast that explores scientific mysteries, unanswered questions, and all the things we learn by diving into the unknown. You can listen to the full conversation here. This interview has been edited for length and clarity.

Brian Resnick

Do you think the Earth is alive?

Ferris Jabr

I do. I think Earth is alive. We can think of Earth as a genuine living entity, in a meaningful sense, and in a scientific sense. There are four parts to the argument that substantiate that statement.

Brian Resnick

What’s the first?

Ferris Jabr

Life isn’t just on Earth. It literally came out of Earth. It is literally part of Earth. It is Earth. All of the matter that we refer to as life is Earth animated — that’s how I come to think about it. If you accept that, then at a bare minimum, you have to accept as a scientific fact that the surface of the planet is genuinely alive, because it is matter that has become animated.

Brian Resnick

Earth animated? What do you mean by that?

Ferris Jabr

Every single living organism is literally made of Earth. All of its constituent elements and components are parts of the planet. We all come from the planet. We all return to the planet. It’s just a big cycle. And so life, the biological matter on the planet, is literally the matter of the planet, animated. It is living matter.

Imagine a vast beach and sandcastles and other sculptures spontaneously emerge from the sand. They are still made of sand, right? They’re not suddenly divorced from the beach just because they’ve arisen from the beach. Those castles and sculptures are still literally the beach. And I think it’s the same with life and Earth.

Brian Resnick

So, the physical components of Earth are the material of life. And so distinguishing these two — Earth and life — seems silly because they comprise each other?

Ferris Jabr

The more you think about this, the more the boundaries dissolve.

Every layer of the planet that we’ve been able to access, we find life there. And in the deepest mines that we have dug, we continue to find microbes and sometimes even more complex organisms like nematodes, these tiny, worm-like creatures.

Brian Resnick

So all life contains Earth, and Earth contains life?

Ferris Jabr

There are components of the Earth that are not alive in any way. The center of the planet, it’s all molten rock and there might be some solid metal in the core.

But think about a redwood tree: It is mostly dead wood in terms of its volume and mass. It is mostly nonliving tissue. And then a little bit of tissue that is laced with living cells. So, you know, most complex multicellular living entities are a jumble of the animate and inanimate. Earth is not unusual in that way.

Brian Resnick

What is part two of your argument?

Ferris Jabr

All these organisms [on Earth], they give Earth a kind of anatomy and physiology. Life dramatically increases the planet’s capacity to absorb, store, and transform energy, to exchange gases, and to perform complex chemical reactions.

Brian Resnick

What’s a good example of this?

Ferris Jabr

You can think of all of the photosynthetic life on the planet acting in concert. It’s not that they’re deliberately collaborating to do something, but they’re all doing their own thing at the same time.

NASA has made these amazing videos and animations and they’ve literally called them “Earth breathing,” because you can see how the levels of carbon dioxide and oxygen in the atmosphere fluctuate with the seasons. The amount of vegetation that rings the continents, especially in the Northern Hemisphere, in the mid-latitudes, it changes dramatically with the seasons. It has a sinuous rhythm. It looks like a pulse or like breathing.

Brian Resnick

So, are you saying something like all of the algae or plankton in the ocean are generating this together? … Is that kind of like how all of the cells in my lungs are working together to exchange gases? Or is that not quite the right way to think about it?

Ferris Jabr

I think we have to be careful with making too direct a comparison. You as an organism are a product of evolution by natural selection. Your structure, your anatomy is something that was written into your genome. That’s not how the Earth system formed.

Brian Resnick

I’m realizing a key to this conversation is what you just corrected me on. When we’re discussing this notion about the “Earth being alive,” we’re not suggesting it’s not alive in the same way you and I are. But there’s these equivalent processes that look very similar to the way my body maintains homeostasis, for example. It’s not like the Earth is exchanging gases and doing metabolism-like things in the way I’ve been evolved to. It’s not achieving homeostasis the way you or I do. But yet it is doing something that seems analogous. Is that the kind of thing that you’re arguing here, overall?

Ferris Jabr

Absolutely.

When we’re looking at the planet, we see life-like qualities, things that resemble the characteristics of the organism, which is the most familiar life form to us. But it is not exactly the same. It is still genuinely alive, in my opinion, but is not exactly an organism.

Life is a phenomenon that occurs at multiple scales. The way I think of it is that it’s not identical at all of those scales, but it rhymes and there are analogies between each of those scales.

I like to think of a leaf on a tree in a forest on a planet.

There’s no disagreement whatsoever within science that the cells that compose that leaf are alive. The tissues that those cells form are alive. The leaf as a whole is a living tissue. The tree we consider an organism that is also alive. We consider each of those layers to be alive. There’s no debate or controversy about that.

Once we go above the scale of the organism, this is where the debate begins. Can we think of the forest, the ecosystem, as alive as well? And then one more level higher. Can we think of the planet as alive?

My argument is, yes, that each of those levels, each of those scales is equally alive but not identical. And there are analogous processes that happen at each. But they’re not exactly the same.

Brian Resnick

What is the next plank of your argument?

Ferris Jabr

Life is also an engine of planetary evolution. The planet evolves over time dramatically. It is not exactly the same as standard Darwinian evolution through natural selection, but it is very much a type of evolution.

Organisms and their environments continually co-evolve. Each is profoundly changing the other.

This reciprocal transformation is responsible for many of the planet’s defining features: for our breathable atmosphere, our blue sky, our bountiful oceans, our fertile soils. This is all because of life and because of the way that life has changed the planetary environments. These are not default features of the planet. Life has created them over time.

Brian Resnick

What is the most stunning example of how life has actually changed the planet?

Ferris Jabr

In the beginning, Earth had essentially no free oxygen in its atmosphere, and the sky was probably a hazy orange. And when cyanobacteria began to oxygenate the atmosphere through the innovation of photosynthesis, the sky probably started shifting toward the blue part of the spectrum.

The entire chemistry of the planet changed. I mean, you suddenly had an oxygen-rich environment, whereas before it was an oxygen-poor environment. That changes absolutely everything.

Brian Resnick

Okay, so to get back to what you were saying before, it’s not that Earth evolves in the same way that organisms evolve. But it evolves with a different mechanism, is that right?

Ferris Jabr

Evolutionary biologists will say a planet cannot evolve because it doesn’t have a cohesive genome. There’s no genetic inheritance going on; there’s no sexual reproduction going on.

But there are analogous processes by which changes are passed down from generation to generation that are not genetically encoded.

If we think about a bunch of large mammals, they’re transforming their landscape by walking through it with their immense hefts. They’re tearing down vegetation. They’re digging in, uprooting things. They’re changing the landscape.

Those changes persist. And so their descendants now are evolving in a new environment changed by their predecessors. These environmental changes are not themselves genetically encoded, but they are being passed from generation to generation, and they are inevitably influencing the evolution that follows.

Brian Resnick

If a fundamental part of life is that it changes the world in which it exists, how are we different for accelerating the climate crisis? Because you look at the history of the Earth and you say, well, life has powerfully changed it. Who’s to say what we’re doing is necessarily not a natural process?

Ferris Jabr

It’s simultaneously humbling and empowering to recognize ourselves as simply the latest chapter in this long evolutionary saga of life changing the planet. It is a basic property of life to change its environment, and we’re not an exception to that.

But I do think there’s a major distinction between what our species has done and what has happened before in terms of the combined scale and speed and the variety of our changes to the planet. I don’t think there’s any species or creature before us that has changed the planet on such a large scale so quickly and in so many different ways simultaneously.

We have radically altered the atmosphere, the oceans, and the continents. We’ve done it in a couple of centuries. That’s a huge part of the reason for why the crisis we’re going through right now is a crisis. It has so much to do with the scale and the speed of it.

Brian Resnick

What’s part four of your argument?

Ferris Jabr

This co-evolution, on the whole, has amplified the planet’s capacity for self-regulation and enhanced Earth’s resilience. Earth has remained alive for, you know, around 4 billion years, despite repeated catastrophes of unfathomable scale, unlike anything that we have ever experienced in human history. We have to account for that resilience, for that incredible persistence through time.

It is not a deliberate thing. You know, it is not a conscious or collaborative thing. It is simply an inevitable physical process, just as evolution by natural selection is an inevitable physical process.

Even in the mass extinctions in Earth’s history, life recedes to its most fundamental and most resilient forms: microbes. And then life sprouts from there.

Brian Resnick

Are you sure you’re right about all this? Is the scientific community coming around to accept this notion that Earth is indeed alive?

Ferris Jabr

I mean, this book is my personal synthesis, an argument. You know, this is my viewpoint. This is how I have come to see the Earth. There are scientists who agree with me, but I would not say that this is the consensus of modern mainstream science. I think the statement that Earth is alive remains quite controversial and provocative. However, everything else we’ve been talking about, the co-evolution of life and environment, the fact that life has profoundly changed the planet. These are all well-accepted points.

Brian Resnick

Which part are you most likely wrong about? Or which part do you feel like has the most room for doubt?

Ferris Jabr

We do not have a precise, universally accepted definition of life. We haven’t explained it on the most fundamental level. Like 100 years from now, will we have a fundamental explanation for life that we’re missing right now? And if we do, will that make thinking of planets as alive defunct? And so, I think open-mindedness is fundamental to any scientific thinking or scientific process. And we have to be open to the idea that a century from now, or even sooner, all of this will be wrong.

And that’s part of what I find thrilling: We don’t have all of the answers yet. Right? These are incredibly challenging ideas and concepts that we are still working out. If we had figured it out, then we wouldn’t be talking about the Gaia hypothesis anymore. The Gaia would have been officially dead a long time ago. But I think the reason that it remains relevant and continues to be debated means that we just haven’t figured it out yet.

Brian Resnick

Why is it useful to think of the Earth as alive?

Ferris Jabr

There’s a massive difference between thinking of ourselves as living creatures that simply reside on a planet, that simply inhabit a planet, versus being a component of a much larger living entity. When we properly understand our role within the living Earth system, I think the moral urgency of the climate crisis really comes into focus.

All of a sudden it’s not just that, oh, the bad humans have harmed the environment and we need to do something about it. It’s that each of us is literally Earth animated, and we are one part of this much larger, living entity. It’s a realization that everything that we are all doing moment to moment, day to day, is affecting this larger living entity in some way.

Brian Resnick

So, the simple point that you’re making is that we are Earth, and don’t self-harm.

Ferris Jabr

Right, exactly.

Read the full story here.
Photos courtesy of

More than 520 chemicals found in English soil, including long-banned medical substances

Fertilising arable land with human waste leaves array of toxins that could re-enter food chain, study findsMore than 520 chemicals have been found in English soils, including pharmaceutical products and toxins that were banned decades ago, because of the practice of spreading human waste to fertilise arable land.Research by scientists at the University of Leeds, published as a preprint in the Journal of Hazardous Materials, found a worrying array of chemicals in English soils. Close to half (46.4%) of the pharmaceutical substances detected had not been reported in previous global monitoring campaigns. Continue reading...

More than 520 chemicals have been found in English soils, including pharmaceutical products and toxins that were banned decades ago, because of the practice of spreading human waste to fertilise arable land.Research by scientists at the University of Leeds, published as a preprint in the Journal of Hazardous Materials, found a worrying array of chemicals in English soils. Close to half (46.4%) of the pharmaceutical substances detected had not been reported in previous global monitoring campaigns.The anticonvulsants lamotrigine and carbamazepine were among the human-use medicines reported for the first time in English soils.A category of chemicals of particular concern to scientists are emerging contaminants, which are pharmaceuticals and other chemicals which have not been widely studied for their impacts on the environment or human health when they re-enter the food chain.Water companies treat human faeces and remove some of the contaminants from wastewater at their treatment centres. The resulting product is treated biosolids, the organic matter from the human waste, and this is often disposed of by being spread on fields as fertiliser.However, it appears that despite decontamination, hundreds of chemicals are leaching into the soil and in some cases staying there for many years. Several chemicals banned or withdrawn from use decades ago were found to persist in agricultural soils.One of the researchers, Laura Carter, a professor of environmental chemistry at the University of Leeds, said: “Some of the chemicals were banned for use decades ago and their presence suggests that they are really persistent … so soils are a long-term sink of these pollutants.”It is possible these chemicals will enter the food chain and be ingested by humans who eat food grown in these fields, she said. It could also harm farm productivity if the chemicals inhibit plant growth or negatively affect soil health.“Some of the work which we did before this monitoring campaign was focused on the uptake and accumulation into crops and looking at effects on soil health and plant health,” she said. “What we need to understand is the subsequent pathway moving from the crops to consumption. Some of these contaminants can [affect] the soil health, and inhibit the nutrients taken up into crops.”To conduct the research, Carter and her team asked farmers to send soil samples to their lab, and also visited some farms themselves. They took a variety of measures to detect what she calls a “chemical fingerprint” of the soil, using methods including mass spectrometry.skip past newsletter promotionThe planet's most important stories. Get all the week's environment news - the good, the bad and the essentialPrivacy Notice: Newsletters may contain information about charities, online ads, and content funded by outside parties. If you do not have an account, we will create a guest account for you on theguardian.com to send you this newsletter. You can complete full registration at any time. For more information about how we use your data see our Privacy Policy. We use Google reCaptcha to protect our website and the Google Privacy Policy and Terms of Service apply.after newsletter promotionThe EU is working to remove these emerging contaminants from wastewater across the continent by passing legislation requiring countries to implement “quaternary treatment”, which is an advanced pollution removal method that can get rid of micropollutants such as these chemicals. The UK has no plans to do this, and for now is sticking with the less precise tertiary treatment systems.“Wastewater treatment processes can remove some contaminants,” Carter said. “We found that the processes are not as efficient as they need to be to remove them.“These chemicals aren’t regulated for so there isn’t a drive to develop or to focus on technologies that can remove them. More advanced treatment like the EU’s planned quaternary treatment will typically remove more.”Soil pollution is understudied compared with wastewater and river research, despite soil being so important for human and environmental health, and the fact contaminants can persist for decades.“This is because of a combination of factors. There are analytical challenges, the chemicals are often at trace levels so you need to develop methods to extract them; the soil and the biosolids and the more agricultural focus means you have the complexity of the environmental metrics to contend with when you are trying to monitor them. And there is a lack of awareness about the pathways in which they enter the environment,” Carter said.The contaminants can be removed, she said: “You can do processes such as actively planting crops so they take up the contaminants and that is a way of removing contaminants from the soil. But then you’d be left with trying to dispose of that contaminated plant.”She was most surprised to find the banned chemicals, because this showed the long-term persistence of contaminants in soil. “They have been prohibited for use for quite some years so we were surprised by their persistence in the soils,” Carter said.“We were also able to detect some anti-cancer drugs which was surprising because there isn’t very much research in this space so we haven’t seen those detected before.”It is not the fault of farmers for spreading this, she said, as it is what they have been told to do in order to be sustainable.“We need to regulate for them properly and we need education to make sure that everybody knows what is being applied and what the potential risks are that are associated with that,” Carter said.

Locusts and Landmines Threaten Ukraine’s Farmland

Ecosystems have also come under threat from toxic plants whose spread has been difficult to control during the Russian invasion. The post Locusts and Landmines Threaten Ukraine’s Farmland appeared first on The Revelator.

The people of Ukraine won’t soon forget the summer of 2025, a period that saw a significant increase in Russian attacks on the country, including the largest number of drones sent to kill and terrorize Ukrainians. This summer farmers witnessed another invasion of their lands — a locust outbreak that devastated crops across southern and eastern Ukraine. Videos shared with The Revelator show swarms of locusts — each as wide as a human hand — ravaging fields of sunflowers and corn in the Zaporizhzhia, Dnipro, Kherson, and Odesa regions, adding to the dangerous effects of war on these ecosystems. It’s not a coincidence that the regions most affected by the outbreak are among those experiencing some of the worst fighting. Russia’s invasion of Ukraine has triggered an environmental crisis, experts say, that is manifesting in the rise of invasive species. “The fields with proper agrotechnical tillage are not conducive to laying eggs for the locusts,” says Andriy Fedorenko, a senior researcher at the Institute of Grain Crops of the National Academy of Agrarian Sciences in Ukraine, who spent several weeks this summer researching the breeding patterns of locusts in the affected regions. “But abandoned agricultural lands and dried-up ponds are ideal.” He says the locusts have gained a foothold in vast farmlands made unusable by the Russian invasion, as well as the area affected by the destruction of the Kakhovka dam. Devastated crops in Ukraine. Photo: Andriy Fedorenko (used with permission) The Soviet-era structure on the Dnieper River in southern Ukraine was bombed on June 6, 2023, causing flooding in several towns on its banks along with mass casualties. Fedorenko observed that the dam’s destruction had disrupted regional ecosystems. The addition of dry weather and the increase in military activity led to a locust outbreak, he says. In photos and videos shared from the field, Fedorenko offered evidence of how flooding created optimal conditions for an outbreak — a conclusion shared by other scientists. “Receding floodwaters exposed large moist areas, optimal spots for egg laying and feeding,” Stanislav Viter, a researcher with the Ukraine War Environmental Consequences Group, wrote in a recent report. He noted that the wetland reed beds, saturated with floodwaters, provided fodder to the pests. “A single locust consumes vegetation equivalent to 1–1.5 times its weight every day,” Viter wrote. Crop fields “flooded and abandoned because of the war as well as on the bed of the former Kakhovka Reservoir” offered just that. Locusts also need favorable climate conditions — very high temperatures — to breed. Climate change may have furthered their recent reproductive success. “The temperature regime in total over two years, particularly in 2024, has also been extremely high compared to previous years,” says Fedorenko. In 2024 the temperatures across the fertile steppes were the highest in the past 10 years. “The average temperature increased by 1.1°C and 3.9°C in the past decade,” he says. ‘Ecocide’ In a statement shared with The Revelator, the Ukrainian government also provided a similar assessment, terming the phenomenon “Russian ecocide” — the destruction of the environment resulting from Russia’s invasion. “After the destruction of the Kakhovka Hydroelectric Power Plant by Russian troops, large areas that had long been at the bottom of the reservoir were freed from water,” wrote Serhii Tkachuk, head of the State Service of Ukraine on Food Security. “These moist and warm soils, with abundant reed vegetation, became an ideal reserve for the development of locusts.”   View this post on Instagram   A post shared by Ukraine (@ukraine) Tkachuk added that this year the government applied pesticides in several regions to address the outbreaks, most notably an 83-square-mile area in the Zaporizhzhia district. Other local reports documented farmers who suffered crop damages ranging from 25% to a near total loss, stretching as far westward as the Zhytomyr region. In the Kherson region, local media reports noted that nearly 10.4 square miles of sunflowers were destroyed. Locusts were also observed in 2024 in the territory of the Slobozhansky village council of the Chuhuiv district of the Kharkiv region. “There are also large areas of uncultivated land and neglected fields due to the war, and the locust invasion can be considered one of the manifestations of ecocide caused by the actions of the Russian Federation not only against Ukraine but also against the environment as a whole,” Tkachuk wrote. The attack on the dam had long-term consequences for agrarian communities, since nearly 90% of the irrigation canals from the dam have dried up. A 2024 report by the International Center for Ukrainian Victory estimated that the loss of irrigation caused cost the country $182 million a year in lost crop production. As climate change triggers a rise in temperatures, Viter’s report warns, new outbreaks could occur in parts of Ukraine that have become “suitable locations” for locusts due to the war. “The same applies to the El Niño phenomenon, with high temperatures and heavy rainfall in most regions of Ukraine,” he wrote. How Wars Can Breed Locusts In his report Viter noted, “Where there is war, there are locusts.” Michel Lecoq, an entomologist specializing in the ecology of locusts and grasshoppers, agrees. “Conflicts can lead to changes in ecological conditions, transforming some areas into breeding and outbreak zones where hopper bands and swarms can form,” he says. For example, he says, an outbreak of migratory locusts occurred in France after World War II and lasted until 1949. “On 20 July 1945, a swarm stretching 20 km in length was observed,” says Lecoq. “Some individuals migrated to England, illustrating the magnitude of the breeding and multiplication that must have occurred at the time — remarkable given that the species is usually very rare in the Landes, its original outbreak area.” Lecoq says these outbreaks developed in France following the abandonment and fallowing of large tracts of land that were no longer cultivated due to the war — much like what’s happening now in Ukraine. “In most outbreak areas, population dynamics is intimately connected to changes of water balance in breeding areas,” he says. The destruction of the dam “exposed numerous areas — previously submerged — that have since become highly favorable for this insect’s reproduction.” Raiding the Breadbasket The rise of locusts and other invasive species is adding to the challenges of the agrarian community, Ukraine’s economic backbone. Ukraine is often known as the breadbasket of the world, producing 10% of the global wheat market — shipping out 6.5 million metric tons every month before the war. Since the Russian invasion, however, Ukraine’s agricultural sector has suffered direct losses of more than $80 billion in infrastructure and production, according to studies. Evidence also suggests that not only has Russia deliberately targeted agricultural equipment, logistics and storage facilities, they’ve also stolen Ukrainian agricultural products. On top of that, landmines now contaminate more than 54,000 square miles of Ukraine — 20% of the country and one of the highest concentrations of the lethal devices in the world, according to the UN.   View this post on Instagram   A post shared by The HALO Trust (@thehalotrust) This assault on agricultural land has had a direct impact on global food security, prompting action and investment from international bodies and countries in prioritizing the demining of Ukrainian territories. However, the scale of the problem, compounded with the continuing and increasing Russian attacks that add to the contamination, means that it could be decades or even centuries, according to one estimate, before the land is once again usable for farming. According to a recent UN Food Insecurity report, the production estimate for 2024-25, for all grains in unoccupied areas, is 13% lower than the previous year. Amidst this a locust outbreak adds to farmers’ woes. Ironically, some restaurants have tried to raise awareness of the threat by addressing it from a different angle: A few chefs in Kharkiv added locusts to their menu, not only because they were widely available but also to dramatically highlight the problem. Farmlands to Battlefields While the worst of the locust outbreak has passed, Tkachuk wrote that the situation in frontline areas continues to be of “particular concern.” Lecoq also advises close monitoring of the areas exposed by the destruction of the dam — “as far as the current conflict allows,” he says — since swarms could potentially invade much larger territories. History shows how locust outbreaks can quickly travel and extend the scope of their destruction. “During the Middle Age, locust swarms originating from the delta regions of the Danube and Volga rivers were known to migrate as far as Western Europe, reaching Germany and even France,” he points out. The invasions in Ukraine could also spread beyond its borders. “Once invasions begin, they can spread rapidly from their original outbreak area… Swarms could potentially invade much larger territories,” Lecoq says. Unfortunately the situation in Ukraine remains unpredictable. Constant military activities, mainly from regular Russian bombings, have prevented farmers in the region from taking preventive or curative action. Conflicts can prevent access to key areas known to regularly host outbreaks when ecological conditions are favorable, Lecoq says. He points to examples of conflict zones in East Africa and the Near East that have hindered the detection of, and access to, the initial breeding and outbreak areas of the desert locust. “This allowed the outbreaks to expand and develop into an upsurge — a near-invasion — which rapidly spread across much of East Africa and extended as far as Pakistan and India,” he says. In Ukraine many of the affected areas are in active combat zones or areas that are still heavily mined, Tkachuk wrote, making it “difficult or impossible to carry out timely preventive and extermination measures.” Paradise, Disrupted Aside from the locusts and Putin’s army, other invasive species have also arrived unwelcome in Ukraine since the start of the war, experts have observed. “One of the war’s delayed consequences could be an outbreak of these alien species — dangerous invasive flora and fauna, the spread of which must be controlled,” Nataliia Pashkevich, senior researcher at the geobotany and ecology department, at the Ukrainian National Academy of Sciences, wrote in a paper for UWEC. “The geography of the areas from which Russian military units are deployed into Ukraine is quite extensive… and an uncontrolled mass of seeds arriving together with equipment and soldiers is destructive for European ecosystems of Ukraine,” Pashkevich wrote. She identified invasive species such as Sosnowsky’s hogweed (Heracleum sosnowskyi) and giant hogweed (H. mantegazzianum) from the Caucasus that can now be found in occupied territories as well as parts of the Carpathian Mountains. The plants are known to spread rapidly and widely and threaten local insects, birds, plants, and fungi with their peculiar physicochemical toxicity, which can even harm humans on contact. The Revelator previously reported that destruction of the dam led to an unlikely outcome — the revival of the “Great Meadows” in Ukraine, which were lost during the rapid Soviet industrialization in the 1950s. While some of these vegetations can serve as a band-aid for war-wounded regions, risks remain. “As invasives spread, they transform the environment to their own advantage, changing key factors — such as humidity, lighting conditions, soil chemistry,” Pashkevich wrote. “Biological invasions recognize no borders.” Republish this article for free! Read our reprint policy. Previously in The Revelator: Cranes in Ukraine: Birds of Joy in a War-Torn Land The post Locusts and Landmines Threaten Ukraine’s Farmland appeared first on The Revelator.

Wild turkeys off the menu in Maine after ‘forever chemicals’ found in birds

Contamination of wildlife with Pfas, which can increase risk of cancer, a growing problem in USHunters in Maine have been warned not to eat wild turkeys in parts of the state, after the birds were found to contain “forever chemicals” that can cause an increased risk of cancer.Maine officials warned that high levels of Pfas – per- and polyfluoroalkyl substances – have been detected in wild turkey and deer killed and harvested in areas in the south-west of the state. Continue reading...

Hunters in Maine have been warned not to eat wild turkeys in parts of the state, after the birds were found to contain “forever chemicals” that can cause an increased risk of cancer.Maine officials warned that high levels of Pfas – per- and polyfluoroalkyl substances – have been detected in wild turkey and deer killed and harvested in areas in the south-west of the state.The warning could put a dampener on Thanksgiving plans for those who like to hunt and shoot their own dinner centerpiece. But the reality is that wildlife becoming contaminated with Pfas is increasingly a problem in the US.Earlier this fall Wisconsin and Michigan also issued “do not eat” advisories for deer, fish and birds, while in January health officials in New Mexico warned hunters that harmful chemicals had been found in wildlife at a lake in the south of the state.Maine’s department of inland fisheries and wildlife issued “do not eat” advisories in four areas north of Augusta, Maine’s capital earlier this month.“It was found that wildlife sampled within a mile of areas with high soil PFAS concentration levels resulted in animals that had levels of PFAS in their muscle tissue that warranted an advisory,” inland fisheries and wildlife said. “The Department and the Maine CDC [Centers for Disease Control] recommend that no one eats deer or wild turkey harvested in these wildlife consumption advisory areas.”Pfas are a group of chemicals that have been used in manufacturing and added to consumer products since the 1950s. They can take hundreds or even thousands of years to degrade, meaning if they leak into soil or water they can remain there for centuries. The chemicals have been linked to cancer, birth defects, decreased immunity, high cholesterol, kidney disease and a range of other serious health problems.“Wildlife is already contaminated with Pfas on a global scale, and that contamination will continue to be an issue until we greatly reduce the use of Pfas in consumer products and industrial applications,” Tasha Stoiber, a senior scientist at the non-profit Environmental Working Group, said in an interview with the Guardian.Maine, which said it was sampling other areas in the state for Pfas, is not alone in being forced to confront the problem of forever chemicals. At least 17 states have issued advisories against eating fish containing Pfas, and birds and mammals appear to increasingly be a concern.The Michigan departments of health and human services and natural resources issued do not eat advisories in Clark’s Marsh, close to the former Wurtsmith air force base, in September. Officials warned that deer were likely to have “various” Pfas substances, and also said people should not eat any fish, aquatic or semi-aquatic wildlife taken from the marsh.Various advisories have been in place in the area since 2012, with the Pfas contamination linked to the use by the military of foam to extinguish fires. In August New Mexico found alarming levels of Pfas in the blood of people living or working near Cannon air force base – again due to military use of firefighting foam.Wisconsin issued advisories against eating fish and deer in an area around the town of Stella, in the north of the state. Officials said people should only eat deer muscle once a month, and should avoid eating deer liver altogether.Stoiber said it would take “decades” to remediate existing Pfas contamination.“The most effective and important step is to phase out the widespread use of Pfas in commerce and stop ongoing discharges of Pfas into the environment,” she said.“Federal regulations such as enforceable drinking water standards and stronger protections for source water are essential to reducing Pfas pollution and limiting future exposure.“Public education is equally critical. People need clear information about how Pfas exposures occur, since informed public pressure is often needed to drive policymakers to take action and end the widespread use of Pfas.”

Ambitious Plan to Store CO2 Beneath the North Sea Set to Start Operations

INEOS plans to transform the Nini oil field in the North Sea into a carbon storage site

NORTH SEA, Denmark (AP) — Appearing first as a dot on the horizon, the remote Nini oil field on Europe’s rugged North Sea slowly comes into view from a helicopter.Used to extract fossil fuels, the field is now getting a second lease on life as a means of permanently storing planet-warming carbon dioxide beneath the seabed.In a process that almost reverses oil extraction, chemical giant INEOS plans to inject liquefied CO2 deep down into depleted oil reservoirs, 1,800 meters (5,900 feet) beneath the seabed.The Associated Press made a rare visit to the Siri platform, close to the unmanned Nini field, the final stage in INEOS’ carbon capture and storage efforts, named Greensand Future.When the project begins commercial operations next year, Greensand is expected to become the European Union’s first fully-operational offshore CO2 storage site. Environmentalists say carbon capture and storage, also known as CCS, has a role to play in dealing with climate change but should not be used as an excuse by industries to avoid cutting emissions. Mads Gade, chief executive of INEOS Energy Europe, says it will initially begin storing 400,000 tons (363,000 metric tons) of CO2 per year, scaling up to as much as 8 million tons (7.3 million metric tons) annually by 2030.“Denmark has the potential to actually store more than several hundred years of our own emissions,” says Gade. “We are able to create an industry where we can support Europe in actually storing a lot of the CO2 here.”Greensand has struck deals with Danish biogas facilities to bury their captured carbon emissions into the Nini field’s depleted reservoirs.A “CO2 terminal” that temporarily stores the liquefied gas is being built at the Port of Esbjerg, on the western coast of the Danish Jutland peninsula. A purpose-built carrier vessel, dubbed “Carbon Destroyer 1,” is under construction in the Netherlands.Proponents of carbon capture technology say it is a climate solution because it can remove the greenhouse gas that is the biggest driver of climate change and bury it deep underground.The EU has proposed developing at least 250 million tons (227 million metric tons) of CO2 storage per year by 2040, as part of plans to reach “net zero” emissions by 2050.Gade says carbon capture and storage is one of the best means of cutting emissions."We don’t want to deindustrialize Europe,” he said. “We want to have actually a few instruments to decarbonize instead.”Experts at Denmark’s geological survey say Greensand sandstone rock is well-suited for storing the liquefied CO2. Almost a third of the rock volume is made up of tiny cavities, said Niels Schovsbo, senior researcher at the Geological Survey of Denmark and Greenland.“We found that there (are) no reactions between the reservoir and the injected CO2. And we find that the seal rock on top of that has sufficient capacity to withhold the pressure that is induced when we are storing CO2 in the subsurface,” added Schovsbo. “These two methods makes it a perfect site for storage right there.” Limitations and criticism But while there are many carbon capture facilities around the world, the technology is far from scale, sometimes uses fossil fuel energy in its operations and captures just a tiny fraction of worldwide emissions.The Greensand project aims to bury up to 8 million tons (7.3 million metric tons) of CO2 a year by 2030. The International Energy Agency says nearly 38 billion tons (34.5 billion metric tons) of CO2 were emitted globally last year.Environmental campaigners say CCS has been used as an excuse by industries to delay cutting emissions.“We could have CCS on those very few sectors where emissions are truly difficult or impossible to abate,” said Helene Hagel, head of climate and environmental policy at Greenpeace Denmark.“But when you have all sectors in society almost saying, we need to just catch the emissions and store them instead of reducing emissions — that is the problem.”While the chemical giant ramps up carbon storage efforts, it is also hoping to begin development at another previously unopened North Sea oil field."The footprint we deliver from importing energy against producing domestic or regional oil and gas is a lot more important for the transition instead of importing with a higher footprint,” said Gade, defending the company’s plans.“We see a purpose in doing this for a period while we create a transition for Europe.”The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.Copyright 2025 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See – Nov. 2025

California regulators approve rules to curb methane leaks and prevent fires at landfills

California air regulators adopted new rules designed to reduce methane leaks and better respond to disastrous underground fires at landfills statewide.

In one of the most important state environmental decisions this year, California air regulators adopted new rules designed to reduce methane leaks and better respond to disastrous underground fires at landfills statewide. California Air Resources Board members voted 12-0 on Thursday to approve a batch of new regulations for the state’s nearly 200 large landfills, designed to minimize the release of methane, a powerful greenhouse gas produced by decomposing organic waste. Landfills are California’s second-largest source of methane emissions, following only the state’s large dairy cow and livestock herds.The new requirements will force landfill operators to install additional pollution controls; more comprehensively investigate methane leaks on parts of landfills that are inaccessible with on-the-ground monitoring using new technology like drones and satellites; and fix equipment breakdowns much faster. Landfill operators also will be required to repair leaks identified through California’s new satellite-detection program. The regulation is expected to prevent the release of 17,000 metric tons of methane annually — an amount capable of warming the atmosphere as much as 110,000 gas-fired cars driven for a year. It also will curtail other harmful landfill pollution, such as lung-aggravating sulfur and cancer-causing benzene. Landfill operators will be required to keep better track of high temperatures and take steps to minimize the fire risks that heat could create. There are underground fires burning in at least two landfills in Southern California — smoldering chemical reactions that are incinerating buried garbage, releasing toxic fumes and spewing liquid waste. Regulators found explosive levels of methane emanating from many other landfills across the state.During the three-hour Air Resources Board hearing preceding the vote, several Californians who live near Chiquita Canyon Landfill — one of the known sites where garbage is burning deep underground — implored the board to act to prevent disasters in other communities across the state.“If these rules were already updated, maybe my family wouldn’t be sick,” said Steven Howse, a 27-year resident of Val Verde. “My house wouldn’t be for sale. My close friend and neighbor would still live next door to me. And I wouldn’t be pleading with you right now. You have the power to change this.”Landfill operators, including companies and local governments, voiced their concern about the costs and labor needed to comply with the regulation. “We want to make sure that the rule is implementable for our communities, not unnecessarily burdensome,” said John Kennedy, a senior policy advocate for Rural County Representatives of California, a nonprofit organization representing 40 of the state’s 58 counties, many of which own and operate landfills. “While we support the overarching goals of the rule, we remain deeply concerned about specific measures including in the regulation.”Lauren Sanchez, who was appointed chair of the California Air Resources Board in October, recently attended the United Nations’ COP30 climate conference in Brazil with Gov. Gavin Newsom. What she learned at the summit, she said, made clear to her that California’s methane emissions have international consequences, and that the state has an imperative to reduce them. “The science is clear, acting now to reduce emissions of methane and other short-lived climate pollutants is the best way to immediately slow the pace of climate change,” Sanchez said.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.