Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

In Texas, ex-oil and gas workers champion geothermal energy as a replacement for fossil-fueled power plants

News Feed
Tuesday, March 26, 2024

Sign up for The Brief, The Texas Tribune’s daily newsletter that keeps readers up to speed on the most essential Texas news. This is the second of a three-part series on emerging energy sources and Texas' role in developing them. Part one, on hydrogen fuel, published on Monday; part three, on small nuclear reactors, will publish on Wednesday. STARR COUNTY — In 2009, on a plot of shrub-covered cattle land about 45 miles northwest of McAllen, Shell buried and abandoned a well it drilled to look for gas. The well turned out to be a dry hole. Vegetation grew back over the site. In 2021, a Houston-based energy company run by former Shell employees came looking for it. This company wasn’t drilling for oil or gas, though. Its engineers were looking for a place to experiment with their technology for producing geothermal energy, created by Earth’s underground heat. A startup called Sage Geosystems leased the site. The company installed a wellhead and brought in a diesel-powered pump. They used fluid to create cracks in the rock deep below the surface, a technique similar to fracking for oil and gas. One day last March, the crew pumped 20,000 barrels of water into the 2-mile-deep well. Hours later, an operator opened the well from a control room. Pipes above ground shook as the pressurized water gushed back up. The water spun small turbines, generating electricity. The pressurized water, which was pumped underground and later released to the surface through the well on the right, at the Starr County demonstration on March 22, 2023. Credit: Verónica Gabriela Cárdenas for The Texas Tribune Left: Water spins a turbine at the Starr County demonstration site. Right: An operator controls the flow in and out of the well. Credit: Verónica Gabriela Cárdenas for The Texas Tribune Sage and other companies believe geothermal power is key to replacing polluting coal- and gas-fired power plants. Even though solar and wind are proven clean energy sources, they only produce electricity when the sun shines or the wind blows. Geothermal power could provide continuous, emissions-free energy. “Geothermal heat doesn’t have those variable conditions,” University of Texas at Austin clean energy expert Michael Webber said. “If you hit a hot spot below ground — might be thousands of feet down — the heat won’t matter based on whether it’s cloudy or whether it’s summer.” Texas has become an early hot spot for geothermal energy exploration. At least three companies are based in Houston, and scores of former oil industry workers and executives are taking their knowledge of geology, drilling and extraction to a new energy source. “We’ve punched over a million holes in the ground in Texas since Spindletop,” said former Texas oil and gas regulator Barry Smitherman, who has become a geothermal advocate. “So we have a lot of knowledge, and we have a lot of history and skill set.” Hveragerði, a city in Iceland, where 85% of the country's energy is sustainable, either hydroelectric or geothermal. Credit: Raul Moreno/SOPA Images/via REUTERS Heat constantly radiates out from the center of Earth as radioactive elements break down. That energy warms water that bubbles up to or escapes as steam at the surface. Humans have taken advantage of that phenomenon — an early form of geothermal power — for heating, bathing and cooking since ancient times. For more than 100 years, engineers have used that underground hot water or steam to generate electricity. Geothermal power in 2015 fueled 27% of the electricity in Iceland, which sits on one of the world’s most active volcanic zones. In 2022, it generated about 5% of the electricity in California. The United States is the top geothermal electricity producer in the world. Still, the total amount of geothermal electricity produced in America is tiny compared with other sources. It accounted for about 4 gigawatts last year, according to a federal analysis, or enough to power about 800,000 Texas homes. Businesses such as Sage and government researchers say there’s a lot more geothermal power to be had by pumping fluid through hot rock where there is no natural water. With technological advances, a government analysis predicts geothermal power in the U.S. could grow to 90 gigawatts by 2050. That would have been enough to power the entire Texas grid during last summer’s highest-demand day. Companies are racing to develop their technology and techniques to harness this energy source. They vary in how deep they want to drill (from around 7,000 feet, which oil and gas equipment can handle, to 66,000 feet, which it cannot), how they heat the water (in the well or in the rock) and how they bring the heated water back up (in the same well that sent it down or with a second one). Like oil wildcatters, the geothermal industry must figure out the best places to drill. They’ll face the same concerns about triggering earthquakes that have dogged oil and gas fracking operations and previous geothermal efforts. In 2006, a pilot geothermal plant in Switzerland caused a magnitude 3.4 earthquake that damaged buildings and led to the plant’s closure. In 2017, a magnitude 5.5 earthquake linked to a pilot geothermal project in South Korea injured dozens. Companies should follow existing best practices informed by research to monitor seismicity and adjust or pause operations as needed, said William Ellsworth, an emeritus professor at Stanford University. States could also mandate these protocols. “You have to pay attention to what you’re doing,” Ellsworth said. And perhaps most importantly, the geothermal businesses will have to show they can compete with the cost of other power sources, with help from the federal government in the form of Inflation Reduction Act tax credits. The more the technology is deployed, the more the costs might come down, Rice University Associate Professor Daniel Cohan said. Getting the price where the federal government hopes for it to be cost-competitive is “feasible,” Cohan said, “but there’s no guarantee that the industry will get there.” The federal Department of Energy said this month that $20 billion to $25 billion needed to be invested by 2030 to move toward widespread use. “We’re all doing something a little bit different,” Sage CEO Cindy Taff said. “One of us is going to have a breakthrough that really commercializes this stuff.” The daughter of a geophysicist who worked for Mobil, Taff studied mechanical engineering and built a 36-year career at Shell. She worked her way up from production engineer to vice president, managing a team with an annual budget of around $1 billion. Taff explains how Sage Geosystems uses its Starr County well to store energy. Credit: Verónica Gabriela Cárdenas for The Texas Tribune With freckles and curly hair that falls past her shoulders, Taff said she knew the world wanted to pivot to new energy sources. Her daughter, concerned about climate change, urged her mother to get away from the “dark side” of oil and gas. When former colleagues from Shell told Taff they were co-founding Sage and invited her to join them, she got excited. Taff saw that Sage was a nimble company with people she considered some of the smartest in the industry. The geothermal business had a lot of growing to do, like the early days of wind or solar. Her work could have a large impact. “It was exciting to be working with people that I knew had a sense of urgency and made a difference,” Taff said. “And then, it was exciting to be working for yourself in a way that you can push the agenda.” So, in 2020, Taff took the leap. Her daughter joined the company too. Building interest in geothermal  In 1989, the Exxon Valdez oil tanker spilled 11 million gallons of oil off the coast of Alaska, killing some 250,000 seabirds, 2,800 sea otters and 300 harbor seals. In Augusta, Georgia, 10-year-old Jamie Beard was riveted by the news coverage. “I understood things enough to know that that was not something we wanted,” Beard said. That experience pushed Beard into environmental activism, starting the next day, when she took a Kleenex box decorated like the ocean to raise money for coral reefs. She painted murals about environmental rights. In college, at Appalachian State University, she organized an Earth Day festival and tied herself to trees on a West Virginia mountaintop to protest workers scraping them away to mine for coal. Years before Jamie Beard helped launch Sage Geosystems, she was a student at Appalachian State University teaching others how to use solar ovens. Credit: Courtesy of Jamie Beard Beard went on to study environmental law at Boston University. She represented corporations, telling herself she could make change best from the inside. That proved incorrect. She joined a startup working on technology that could be applied to geothermal drilling. That’s when her life changed. Beard read an interview about the huge potential for geothermal power to provide electricity around the world. The interview was with Massachusetts Institute of Technology professor Jefferson Tester, who led a team that published a 372-page assessment of the resource for the federal government in 2006. “The technology needed to advance … but it wasn’t like it had to invent a whole new area because it’s so compatible with what we do with hydrocarbon extraction,” Tester said in an interview with the Texas Tribune. “They drill holes in the ground and they pull fluids out of the ground, whether they’re gas or liquids, and they sell it. Well, that’s what you do for geothermal too.” Beard read the report over and over. This is my career, Beard thought. The history of modern geothermal power went back a century: The world’s first full-scale geothermal power plant started operating in 1913 in Italy. In 1960, Pacific Gas and Electric built the first commercial geothermal power plant in the United States at a spot in Northern California known as “The Geysers.” In the 1970s, the federal Department of Energy started researching pulling power from what was referred to as hot, dry rock. The country that decade suffered through Arab countries’ embargo on exporting oil to America, causing oil prices to skyrocket. Still, the technology didn’t get far enough for the concept to take off. The Larderello geothermal power plant, which is the world's oldest, was built in Tuscany, Italy. Credit: Enel Green Power Engineers built geothermal power plants where they could find existing water resources relatively easily, maybe marked by hot springs or fumaroles, which are holes where hot gases and vapors escape from underground, said Lauren Boyd, director of the U.S. Department of Energy’s geothermal technologies office. But building new plants got riskier as prime locations got harder to find. Beard saw opportunity. She knew the oil and gas industry could develop technology quickly. The U.S. ushered in the “shale revolution” as companies drilled horizontally and cracked open rock with hydraulic fracturing, known as fracking, to extract giant amounts of oil and gas. That technology could be used for geothermal. Beard, 45, is the type of person who speaks with an energy that rubs off on you. Her hair is cut into an angular bob; she wears artsy glasses. She made giving a TED talk look easy. Armed with a $1 million Department of Energy grant, Beard moved to the University of Texas at Austin around 2019 to convince people that now was the time to start a geothermal company. She argued that oil and gas experts did not have to be only the villains in the climate change story; they could also be the people who help alleviate it. Jamie Beard speaks at a SXSW panel titled "Geothermal and the Promise of Clean Energy Abundance" on March 9 in Austin. Credit: Courtesy of Jamie Beard “Oil and gas people are a gigantic brain trust,” Beard said. “They are a huge asset.” Beard had a young son. She learned he inherited a rare genetic condition that gave him a life expectancy of 10 or so years. A journalist from Wired who profiled Beard described a woman facing an existential choice: She could let the doom of his fate swallow her, or focus on changing the world. Beard started by reaching out to industry veterans whom she suspected were retired, golfing and bored. Maybe their grandchildren were after them for being part of the fossil fuel industry that contributes to climate change. Beard said she spent months talking with people like Lance Cook, who retired from Shell as a vice president. Beard said the reaction she usually got was “it’ll never work,” followed by a phone call a few weeks later that the person was still thinking about it. But Cook decided to jump in, and he became the chief technology officer for a new company named for Beard’s son, Sage. Chris Anderson, the leader of TED, known for its conferences with TED talks by experts on various topics, invested $16 million through his climate investment fund. Drilling firm Nabors invested $9 million more. Early successes  Beard wasn’t the only person who saw the potential of leveraging expertise from the oil and gas industry to develop geothermal in Texas. Tim Latimer grew up in a city of about 1,000 residents in Central Texas, where he remembers being fascinated by the Discovery Channel show “Build It Bigger” about constructing large projects that impact many lives, such as bridges, tunnels and dams. Latimer studied mechanical engineering at the University of Tulsa. He wanted a job back in Texas to be near family and friends, so when he graduated in 2012 he went to work on drilling sites while the shale revolution was taking off. Latimer considered whether he should be working in fossil fuels in a world confronting climate change. But working on rapidly developing technology alongside smart people excited him. Moving into wind or solar didn’t feel right after years studying drilling. Fervo CEO Tim Latimer at the Fervo Energy office in Houston on March 22. Credit: Mark Felix for the The Texas Tribune Then came the lightbulb moment. He found the same 2006 geothermal report that inspired Beard. He realized that what he was doing, which included drilling into high-temperature rock in South Texas, presented what he called a “huge opportunity for tech transfer” into geothermal. Latimer thought the idea was so obvious he could join a geothermal company already doing it. He found none. What if this could change how the world gets energy and no one tried it? he wondered. Like other startup founders, he’s articulate and dreams big. At a conference where some wore suits, he wore sneakers, a button-down and jeans. Latimer went to Stanford University Graduate School of Business and met a classmate getting a PhD in geothermal research. Together they started Fervo Energy. They headquartered the business in Houston. Their first Houston-based hire had 15 years of experience working for oil and gas companies Hess and BP. Fervo now employs 80 people, about 60% of whom came from oil and gas work. Fervo’s approach is basically to drill vertically, then use fracking technology to create horizontal cracks in the earth. That way, operators can send water down the well, where it can flow through the small cracks in the rock to heat before coming back up another nearby well. Two California energy providers have signed contracts to buy power from Fervo. Google also has a financial agreement with them. Oil and gas company Devon Energy Corporation invested $10 million. Last summer, Fervo ran a 30-day test in 375-degree rock in Nevada. They deemed it a success, and now the company is building a project nearby in Utah, next to where the Department of Energy has sponsored a geothermal field lab. They expect the project will put power mostly onto the California grid in 2026. Drilling deeper Back in Houston, in a beige set of warehouses on the south side of town, another company led by former oil and gas experts is taking a third approach. Henry Phan left a 19-year career in product development at Schlumberger, where his work included designing drilling equipment that could steer sideways, to join a former colleague who launched Quaise Energy. The company focuses on using millimeter waves — which are higher frequency microwaves like the ones used to heat food — to create wells by vaporizing rock. Henry Phan, vice president of engineering for Quaise Energy, stands with a wave guide that the company uses to direct waves from the surface into the hole they are creating, in Houston on Feb. 15, 2024. Credit: Joseph Bui for The Texas Tribune First: Employees of Quaise Energy stand next to a repurposed drilling rig that will hold a wave guide. Last: Vaporized basalt rock from testing at Quaise Energy in Houston. Credit: Joseph Bui for The Texas Tribune Oil and gas equipment begins to fail when temperatures below ground reach around 400 degrees. Drill bits wear down quickly against harder rock and electronics are pushed past their limits. Using millimeter waves would allow operators to “drill” deeper than oil and gas equipment can go — which means reaching hotter rock that could produce more power. The idea interested Phan, and he thought the physics made sense. Plus, he would work on cutting-edge technology that he thought could be a “big step change for humanity.” Quaise had a lot less bureaucracy than at the giant Schlumberger, where money going into product development seemed to be diminishing. In 2020, he signed on as Quaise’s vice president of engineering. He brought more former colleagues with him. Quaise aims to be able to drill into 300 to 500 degree rock by 2026, produce steam that can generate electricity by 2028 and go commercial after that. Their investors include Nabors, climate investors Prelude Ventures and billionaire Vinod Khosla. In early experiments with the technology, they used millimeter waves to “drill” through an eight-foot cylinder of basalt rock, plus samples of 1- to 2-inch-thick basalt. The examples sit on display in their office. “It’s cool to work on a new product,” Phan said, “but the fact that it can make an impact to … our life and our children’s life and their generation and their kids is monumental. So it’s rewarding from the point of view that we’re working on something that is so impactful if we can make this thing work.” Disclosure: Google, Rice University and the University of Texas at Austin have been financial supporters of The Texas Tribune, a nonprofit, nonpartisan news organization that is funded in part by donations from members, foundations and corporate sponsors. Financial supporters play no role in the Tribune's journalism. Find a complete list of them here. We can’t wait to welcome you to downtown Austin Sept. 5-7 for the 2024 Texas Tribune Festival! Join us at Texas’ breakout politics and policy event as we dig into the 2024 elections, state and national politics, the state of democracy, and so much more. When tickets go on sale this spring, Tribune members will save big. Donate to join or renew today.

Texas has become an early hot spot for geothermal energy exploration as scores of former oil industry workers and executives are taking their knowledge to a new energy source.

Sign up for The Brief, The Texas Tribune’s daily newsletter that keeps readers up to speed on the most essential Texas news.


This is the second of a three-part series on emerging energy sources and Texas' role in developing them. Part one, on hydrogen fuel, published on Monday; part three, on small nuclear reactors, will publish on Wednesday.

STARR COUNTY — In 2009, on a plot of shrub-covered cattle land about 45 miles northwest of McAllen, Shell buried and abandoned a well it drilled to look for gas. The well turned out to be a dry hole. Vegetation grew back over the site.

In 2021, a Houston-based energy company run by former Shell employees came looking for it.

This company wasn’t drilling for oil or gas, though. Its engineers were looking for a place to experiment with their technology for producing geothermal energy, created by Earth’s underground heat.

A startup called Sage Geosystems leased the site. The company installed a wellhead and brought in a diesel-powered pump. They used fluid to create cracks in the rock deep below the surface, a technique similar to fracking for oil and gas.

One day last March, the crew pumped 20,000 barrels of water into the 2-mile-deep well. Hours later, an operator opened the well from a control room. Pipes above ground shook as the pressurized water gushed back up. The water spun small turbines, generating electricity.

The pressurized water, which was pumped underground and later released to the surface through the well on the right, at the Starr County demonstration on March 22, 2023. Credit: Verónica Gabriela Cárdenas for The Texas Tribune
Left: Water spins a turbine at the Starr County demonstration site. Right: An operator controls the flow in and out of the well. Credit: Verónica Gabriela Cárdenas for The Texas Tribune

Sage and other companies believe geothermal power is key to replacing polluting coal- and gas-fired power plants. Even though solar and wind are proven clean energy sources, they only produce electricity when the sun shines or the wind blows. Geothermal power could provide continuous, emissions-free energy.

“Geothermal heat doesn’t have those variable conditions,” University of Texas at Austin clean energy expert Michael Webber said. “If you hit a hot spot below ground — might be thousands of feet down — the heat won’t matter based on whether it’s cloudy or whether it’s summer.”

Texas has become an early hot spot for geothermal energy exploration. At least three companies are based in Houston, and scores of former oil industry workers and executives are taking their knowledge of geology, drilling and extraction to a new energy source.

“We’ve punched over a million holes in the ground in Texas since Spindletop,” said former Texas oil and gas regulator Barry Smitherman, who has become a geothermal advocate. “So we have a lot of knowledge, and we have a lot of history and skill set.”

Hveragerði, a city in Iceland, where 85% of the country's energy is sustainable, either hydroelectric or geothermal. Credit: Raul Moreno/SOPA Images/via REUTERS

Heat constantly radiates out from the center of Earth as radioactive elements break down. That energy warms water that bubbles up to or escapes as steam at the surface. Humans have taken advantage of that phenomenon — an early form of geothermal power — for heating, bathing and cooking since ancient times.

For more than 100 years, engineers have used that underground hot water or steam to generate electricity. Geothermal power in 2015 fueled 27% of the electricity in Iceland, which sits on one of the world’s most active volcanic zones. In 2022, it generated about 5% of the electricity in California. The United States is the top geothermal electricity producer in the world.

Still, the total amount of geothermal electricity produced in America is tiny compared with other sources. It accounted for about 4 gigawatts last year, according to a federal analysis, or enough to power about 800,000 Texas homes.

Businesses such as Sage and government researchers say there’s a lot more geothermal power to be had by pumping fluid through hot rock where there is no natural water. With technological advances, a government analysis predicts geothermal power in the U.S. could grow to 90 gigawatts by 2050. That would have been enough to power the entire Texas grid during last summer’s highest-demand day.

Companies are racing to develop their technology and techniques to harness this energy source. They vary in how deep they want to drill (from around 7,000 feet, which oil and gas equipment can handle, to 66,000 feet, which it cannot), how they heat the water (in the well or in the rock) and how they bring the heated water back up (in the same well that sent it down or with a second one).

Like oil wildcatters, the geothermal industry must figure out the best places to drill. They’ll face the same concerns about triggering earthquakes that have dogged oil and gas fracking operations and previous geothermal efforts. In 2006, a pilot geothermal plant in Switzerland caused a magnitude 3.4 earthquake that damaged buildings and led to the plant’s closure. In 2017, a magnitude 5.5 earthquake linked to a pilot geothermal project in South Korea injured dozens.

Companies should follow existing best practices informed by research to monitor seismicity and adjust or pause operations as needed, said William Ellsworth, an emeritus professor at Stanford University. States could also mandate these protocols. “You have to pay attention to what you’re doing,” Ellsworth said.

And perhaps most importantly, the geothermal businesses will have to show they can compete with the cost of other power sources, with help from the federal government in the form of Inflation Reduction Act tax credits.

The more the technology is deployed, the more the costs might come down, Rice University Associate Professor Daniel Cohan said. Getting the price where the federal government hopes for it to be cost-competitive is “feasible,” Cohan said, “but there’s no guarantee that the industry will get there.”

The federal Department of Energy said this month that $20 billion to $25 billion needed to be invested by 2030 to move toward widespread use.

“We’re all doing something a little bit different,” Sage CEO Cindy Taff said. “One of us is going to have a breakthrough that really commercializes this stuff.”

The daughter of a geophysicist who worked for Mobil, Taff studied mechanical engineering and built a 36-year career at Shell. She worked her way up from production engineer to vice president, managing a team with an annual budget of around $1 billion.

Taff explains how Sage Geosystems uses its Starr County well to store energy. Credit: Verónica Gabriela Cárdenas for The Texas Tribune

With freckles and curly hair that falls past her shoulders, Taff said she knew the world wanted to pivot to new energy sources. Her daughter, concerned about climate change, urged her mother to get away from the “dark side” of oil and gas.

When former colleagues from Shell told Taff they were co-founding Sage and invited her to join them, she got excited.

Taff saw that Sage was a nimble company with people she considered some of the smartest in the industry. The geothermal business had a lot of growing to do, like the early days of wind or solar. Her work could have a large impact.

“It was exciting to be working with people that I knew had a sense of urgency and made a difference,” Taff said. “And then, it was exciting to be working for yourself in a way that you can push the agenda.”

So, in 2020, Taff took the leap. Her daughter joined the company too.

Building interest in geothermal 

In 1989, the Exxon Valdez oil tanker spilled 11 million gallons of oil off the coast of Alaska, killing some 250,000 seabirds, 2,800 sea otters and 300 harbor seals. In Augusta, Georgia, 10-year-old Jamie Beard was riveted by the news coverage.

“I understood things enough to know that that was not something we wanted,” Beard said.

That experience pushed Beard into environmental activism, starting the next day, when she took a Kleenex box decorated like the ocean to raise money for coral reefs. She painted murals about environmental rights. In college, at Appalachian State University, she organized an Earth Day festival and tied herself to trees on a West Virginia mountaintop to protest workers scraping them away to mine for coal.

Years before Jamie Beard helped launch Sage Geosystems, she was a student at Appalachian State University teaching others how to use solar ovens. Credit: Courtesy of Jamie Beard

Beard went on to study environmental law at Boston University. She represented corporations, telling herself she could make change best from the inside. That proved incorrect. She joined a startup working on technology that could be applied to geothermal drilling.

That’s when her life changed.

Beard read an interview about the huge potential for geothermal power to provide electricity around the world. The interview was with Massachusetts Institute of Technology professor Jefferson Tester, who led a team that published a 372-page assessment of the resource for the federal government in 2006.

“The technology needed to advance … but it wasn’t like it had to invent a whole new area because it’s so compatible with what we do with hydrocarbon extraction,” Tester said in an interview with the Texas Tribune. “They drill holes in the ground and they pull fluids out of the ground, whether they’re gas or liquids, and they sell it. Well, that’s what you do for geothermal too.”

Beard read the report over and over.

This is my career, Beard thought.

The history of modern geothermal power went back a century: The world’s first full-scale geothermal power plant started operating in 1913 in Italy. In 1960, Pacific Gas and Electric built the first commercial geothermal power plant in the United States at a spot in Northern California known as “The Geysers.”

In the 1970s, the federal Department of Energy started researching pulling power from what was referred to as hot, dry rock. The country that decade suffered through Arab countries’ embargo on exporting oil to America, causing oil prices to skyrocket. Still, the technology didn’t get far enough for the concept to take off.

The Larderello geothermal power plant, which is the world's oldest, was built in Tuscany, Italy. Credit: Enel Green Power

Engineers built geothermal power plants where they could find existing water resources relatively easily, maybe marked by hot springs or fumaroles, which are holes where hot gases and vapors escape from underground, said Lauren Boyd, director of the U.S. Department of Energy’s geothermal technologies office. But building new plants got riskier as prime locations got harder to find.

Beard saw opportunity. She knew the oil and gas industry could develop technology quickly. The U.S. ushered in the “shale revolution” as companies drilled horizontally and cracked open rock with hydraulic fracturing, known as fracking, to extract giant amounts of oil and gas. That technology could be used for geothermal.

Beard, 45, is the type of person who speaks with an energy that rubs off on you. Her hair is cut into an angular bob; she wears artsy glasses. She made giving a TED talk look easy.

Armed with a $1 million Department of Energy grant, Beard moved to the University of Texas at Austin around 2019 to convince people that now was the time to start a geothermal company. She argued that oil and gas experts did not have to be only the villains in the climate change story; they could also be the people who help alleviate it.

Jamie Beard speaks at a SXSW panel titled "Geothermal and the Promise of Clean Energy Abundance" on March 9 in Austin. Credit: Courtesy of Jamie Beard

“Oil and gas people are a gigantic brain trust,” Beard said. “They are a huge asset.”

Beard had a young son. She learned he inherited a rare genetic condition that gave him a life expectancy of 10 or so years. A journalist from Wired who profiled Beard described a woman facing an existential choice: She could let the doom of his fate swallow her, or focus on changing the world.

Beard started by reaching out to industry veterans whom she suspected were retired, golfing and bored. Maybe their grandchildren were after them for being part of the fossil fuel industry that contributes to climate change.

Beard said she spent months talking with people like Lance Cook, who retired from Shell as a vice president. Beard said the reaction she usually got was “it’ll never work,” followed by a phone call a few weeks later that the person was still thinking about it. But Cook decided to jump in, and he became the chief technology officer for a new company named for Beard’s son, Sage.

Chris Anderson, the leader of TED, known for its conferences with TED talks by experts on various topics, invested $16 million through his climate investment fund. Drilling firm Nabors invested $9 million more.

Early successes 

Beard wasn’t the only person who saw the potential of leveraging expertise from the oil and gas industry to develop geothermal in Texas.

Tim Latimer grew up in a city of about 1,000 residents in Central Texas, where he remembers being fascinated by the Discovery Channel show “Build It Bigger” about constructing large projects that impact many lives, such as bridges, tunnels and dams.

Latimer studied mechanical engineering at the University of Tulsa. He wanted a job back in Texas to be near family and friends, so when he graduated in 2012 he went to work on drilling sites while the shale revolution was taking off.

Latimer considered whether he should be working in fossil fuels in a world confronting climate change. But working on rapidly developing technology alongside smart people excited him. Moving into wind or solar didn’t feel right after years studying drilling.

Fervo CEO Tim Latimer at the Fervo Energy office in Houston on March 22. Credit: Mark Felix for the The Texas Tribune

Then came the lightbulb moment. He found the same 2006 geothermal report that inspired Beard. He realized that what he was doing, which included drilling into high-temperature rock in South Texas, presented what he called a “huge opportunity for tech transfer” into geothermal.

Latimer thought the idea was so obvious he could join a geothermal company already doing it. He found none. What if this could change how the world gets energy and no one tried it? he wondered. Like other startup founders, he’s articulate and dreams big. At a conference where some wore suits, he wore sneakers, a button-down and jeans.

Latimer went to Stanford University Graduate School of Business and met a classmate getting a PhD in geothermal research. Together they started Fervo Energy. They headquartered the business in Houston. Their first Houston-based hire had 15 years of experience working for oil and gas companies Hess and BP. Fervo now employs 80 people, about 60% of whom came from oil and gas work.

Fervo’s approach is basically to drill vertically, then use fracking technology to create horizontal cracks in the earth. That way, operators can send water down the well, where it can flow through the small cracks in the rock to heat before coming back up another nearby well.

Two California energy providers have signed contracts to buy power from Fervo. Google also has a financial agreement with them. Oil and gas company Devon Energy Corporation invested $10 million.

Last summer, Fervo ran a 30-day test in 375-degree rock in Nevada. They deemed it a success, and now the company is building a project nearby in Utah, next to where the Department of Energy has sponsored a geothermal field lab. They expect the project will put power mostly onto the California grid in 2026.

Drilling deeper

Back in Houston, in a beige set of warehouses on the south side of town, another company led by former oil and gas experts is taking a third approach.

Henry Phan left a 19-year career in product development at Schlumberger, where his work included designing drilling equipment that could steer sideways, to join a former colleague who launched Quaise Energy. The company focuses on using millimeter waves — which are higher frequency microwaves like the ones used to heat food — to create wells by vaporizing rock.

Henry Phan, vice president of engineering for Quaise Energy, stands with a wave guide that the company uses to direct waves from the surface into the hole they are creating, in Houston on Feb. 15, 2024. Credit: Joseph Bui for The Texas Tribune
First: Employees of Quaise Energy stand next to a repurposed drilling rig that will hold a wave guide. Last: Vaporized basalt rock from testing at Quaise Energy in Houston. Credit: Joseph Bui for The Texas Tribune

Oil and gas equipment begins to fail when temperatures below ground reach around 400 degrees. Drill bits wear down quickly against harder rock and electronics are pushed past their limits. Using millimeter waves would allow operators to “drill” deeper than oil and gas equipment can go — which means reaching hotter rock that could produce more power.

The idea interested Phan, and he thought the physics made sense. Plus, he would work on cutting-edge technology that he thought could be a “big step change for humanity.” Quaise had a lot less bureaucracy than at the giant Schlumberger, where money going into product development seemed to be diminishing. In 2020, he signed on as Quaise’s vice president of engineering. He brought more former colleagues with him.

Quaise aims to be able to drill into 300 to 500 degree rock by 2026, produce steam that can generate electricity by 2028 and go commercial after that. Their investors include Nabors, climate investors Prelude Ventures and billionaire Vinod Khosla.

In early experiments with the technology, they used millimeter waves to “drill” through an eight-foot cylinder of basalt rock, plus samples of 1- to 2-inch-thick basalt. The examples sit on display in their office.

“It’s cool to work on a new product,” Phan said, “but the fact that it can make an impact to … our life and our children’s life and their generation and their kids is monumental. So it’s rewarding from the point of view that we’re working on something that is so impactful if we can make this thing work.”

Disclosure: Google, Rice University and the University of Texas at Austin have been financial supporters of The Texas Tribune, a nonprofit, nonpartisan news organization that is funded in part by donations from members, foundations and corporate sponsors. Financial supporters play no role in the Tribune's journalism. Find a complete list of them here.


We can’t wait to welcome you to downtown Austin Sept. 5-7 for the 2024 Texas Tribune Festival! Join us at Texas’ breakout politics and policy event as we dig into the 2024 elections, state and national politics, the state of democracy, and so much more. When tickets go on sale this spring, Tribune members will save big. Donate to join or renew today.

Read the full story here.
Photos courtesy of

Making clean energy investments more successful

Tools for forecasting and modeling technological improvements and the impacts of policy decisions can result in more effective and impactful decision-making.

Governments and companies constantly face decisions about how to allocate finite amounts of money to clean energy technologies that can make a difference to the world’s climate, its economies, and to society as a whole. The process is inherently uncertain, but research has been shown to help predict which technologies will be most successful. Using data-driven bases for such decisions can have a significant impact on allowing more informed decisions that produce the desired results.The role of these predictive tools, and the areas where further research is needed, are addressed in a perspective article published Nov. 24 in Nature Energy, by professor Jessika Trancik of MIT’s Sociotechnical Systems Research Center and Institute of Data, Systems, and Society and 13 co-authors from institutions around the world.She and her co-authors span engineering and social science and share “a common interest in understanding how to best use data and models to inform decisions that influence how technology evolves,” Trancik says. They are interested in “analyzing many evolving technologies — rather than focusing on developing only one particular technology — to understand which ones can deliver.” Their paper is aimed at companies and governments, as well as researchers. “Increasingly, companies have as much agency as governments over these technology portfolio decisions,” she says, “although government policy can still do a lot because it can provide a sort of signal across the market.”The study looked at three stages of the process, starting with forecasting the actual technological changes that are likely to play important roles in coming years, then looking at how those changes could affect economic, social, and environmental conditions, and finally, how to apply these insights into the actual decision-making processes as they occur.Forecasting usually falls into two categories, either data-driven or expert-driven, or a combination of those. That provides an estimate of how technologies may be improving, as well as an estimate of the uncertainties in those predictions. Then in the next step, a variety of models are applied that are “very wide ranging,” Trancik says, “different models that cover energy systems, transportation systems, electricity, and also integrated assessment models that look at the impact of technology on the environment and on the economy.”And then, the third step is “finding structured ways to use the information from predictive models to interact with people that may be using that information to inform their decision-making process,” she says. “In all three of these steps, how you need to recognize the vast uncertainty and tease out the predictive aspects. How you deal with uncertainty is really important.”In the implementation of these decisions, “people may have different objectives, or they may have the same objective but different beliefs about how to get there. And so, part of the research is bringing in this quantitative analysis, these research results, into that process,” Trancik says. And a very important aspect of that third step, she adds, is “recognizing that it’s not just about presenting the model results and saying, ‘here you go, this is the right answer.’ Rather, you have to bring people into the process of designing the studies and interacting with the modeling results.”She adds that “the role of research is to provide information to, in this case, the decision-making processes. It’s not the role of the researchers to push for one outcome or another, in terms of balancing the trade-offs,” such as between economic, environmental, and social equity concerns. It’s about providing information, not just for the decision-makers themselves, but also for the public who may influence those decisions. “I do think it’s relevant for the public to think about this, and to think about the agency that actually they could have over how technology is evolving.”In the study, the team highlighted priorities for further research that needs to be done. Those priorities, Trancik says, include “streamlining and validating models, and also streamlining data collection,” because these days “we often have more data than we need, just tons of data,” and yet “there’s often a scarcity of data in certain key areas like technology performance and evolution. How technologies evolve is just so important in influencing our daily lives, yet it’s hard sometimes to access good representative data on what’s actually happening with this technology.” But she sees opportunities for concerted efforts to assemble large, comprehensive data on technology from publicly available sources.Trancik points out that many models are developed to represent some real-world process, and “it’s very important to test how well that model does against reality,” for example by using the model to “predict” some event whose outcome is already known and then “seeing how far off you are.” That’s easier to do with a more streamlined model, she says.“It’s tempting to develop a model that includes many, many parameters and lots of different detail. But often what you need to do is only include detail that’s relevant for the particular question you’re asking, and that allows you to make your model simpler.” Sometimes that means you can simplify the decision down to just solving an equation, and other times, “you need to simulate things, but you can still validate the model against real-world data that you have.”“The scale of energy and climate problems mean there is much more to do,” says Gregory Nemet, faculty chair in business and regulation at the University of Wisconsin at Madison, who was a co-author of the paper. He adds, “while we can’t accurately forecast individual technologies on their own, a variety of methods have been developed that in conjunction can enable decision-makers to make public dollars go much further, and enhance the likelihood that future investments create strong public benefits.”This work is perhaps particularly relevant now, Trancik says, in helping to address global challenges including climate change and meeting energy demand, which were in focus at the global climate conference COP 30 that just took place in Brazil. “I think with big societal challenges like climate change, always a key question is, ‘how do you make progress with limited time and limited financial resources?’” This research, she stresses, “is all about that. It’s about using data, using knowledge that’s out there, expertise that’s out there, drawing out the relevant parts of all of that, to allow people and society to be more deliberate and successful about how they’re making decisions about investing in technology.”As with other areas such as epidemiology, where the power of analytical forecasting may be more widely appreciated, she says, “in other areas of technology as well, there’s a lot we can do to anticipate where things are going, how technology is evolving at the global or at the national scale … There are these macro-level trends that you can steer in certain directions, that we actually have more agency over as a society than we might recognize.”The study included researchers in Massachusetts, Wisconsin, Colorado, Maryland, Maine, California, Austria, Norway, Mexico, Finland, Italy, the U.K., and the Netherlands. 

German Coalition Agrees to Fast-Track Infrastructure, Scrap Unpopular Heating Law

BERLIN, Dec 11 (Reuters) - Germany's ruling coalition has agreed ‌a ​new law to fast-track infrastructure projects ‌and to scrap clean-heating...

BERLIN, Dec 11 (Reuters) - Germany's ruling coalition has agreed ‌a ​new law to fast-track infrastructure projects ‌and to scrap clean-heating legislation in favour of a broader law ​on modernising buildings, Chancellor Friedrich Merz said on Thursday.Merz's government, which took power seven months ago, has ‍pledged to revive Germany's sluggish economy, ​Europe's largest, by accelerating projects to improve infrastructure.The conservative chancellor said a wide range of ​transport schemes ⁠would be classified as being of "overriding public interest" under the new law, giving them priority in planning and approval processes.All related administrative procedures will move to a "digital only" standard intended to shorten timelines, while electrifying rail lines of up to 60 kilometres (37 miles) will no longer require ‌an environmental impact assessment, he said."Environmental protection remains important but it can no longer block ​urgently ‌needed measures through endless procedures," ‍Merz told ⁠a press conference following Wednesday evening's cabinet meeting.Germany was long admired for the efficiency of its infrastructure but has been increasingly criticised for letting it decay due to successive governments' aversion to taking on new debt.Breaking with that fiscal tradition, Merz's government earlier this year pushed through debt reforms to borrow hundreds of billions of euros in a special fund, though critics say some of that fiscal firepower has ​been used to prop up day-to-day spending.MORE FLEXIBILITY ON TECHNOLOGY CHOICESOn heating, Merz confirmed the coalition would scrap a contested law that requires most newly installed systems to run largely on renewable energy.The measure, pushed through by the previous centre-left government, triggered a backlash from homeowners and opposition parties and was widely seen as contributing to a sharp slump in support for the coalition that eventually collapsed.The revamped Building Modernisation Act will keep the goal of cutting emissions from buildings but give households more flexibility over technology choices and timelines. The government plans to send it to parliament ​by next spring.With five state elections looming next year, Merz's conservatives and their junior coalition partner, the centre-left Social Democrats, need some wins after a series of political blunders.Support for both parties has dropped since February's federal election, while the far-right Alternative ​for Germany has shot into pole position in nationwide surveys.(Reporting by Sarah Marsh; editing by Matthias Williams and Gareth Jones)Copyright 2025 Thomson Reuters.Photos You Should See – December 2025

The Navajo Nation said no to a hydropower project. Trump officials want to ensure tribes can’t do that again.

The U.S. Energy Secretary said allowing tribes to weigh in on energy projects on their land creates "unnecessary burdens to the development of critical infrastructure."

Early last year, the hydropower company Nature and People First set its sights on Black Mesa, a mountainous region on the Navajo Nation in northern Arizona. The mesa’s steep drop offered ideal terrain for gravity-based energy storage, and the company was interested in building pumped-storage projects that leveraged the elevation difference. Environmental groups and tribal community organizations, however, largely opposed the plan. Pumped-storage operations involve moving water in and out of reservoirs, which could affect the habitats of endangered fish and require massive groundwater withdrawals from an already-depleted aquifer.  The Federal Energy Regulatory Commission, which has authority over non-federal hydropower projects on the Colorado River and its tributaries, ultimately denied the project’s permit. The decision was among the first under a new policy: FERC would not approve projects on tribal land without the support of the affected tribe. Since the project was on Navajo land and the Navajo Nation opposed the project, FERC denied the permits. The Commission also denied similar permit requests from Rye Development, a Florida-based company, that also proposed pumped-water projects. Now, Department of Energy Secretary Chris Wright wants to reverse this policy. In October, Wright wrote to FERC, requesting that the commission return to its previous policy and that giving tribes veto power was hindering the development of hydropower projects. The commission’s policy has created an “untenable regime,” he noted, and “For America to continue dominating global energy markets, we must remove unnecessary burdens to the development of critical infrastructure, including hydropower projects.”  Wright also invoked a rarely used authority under the Federal Powers Act to request that the commission make a final decision no later than December 18. And instead of the 30 to 60 days generally reserved for proposed rule changes, the FERC comment period was open for only two weeks last month. If his effort proves successful, hydropower projects like the ones proposed by Nature and People First could make a return to the Navajo Nation regardless of tribal support.  More than 20 tribes and tribal associations largely in the Southwest and Pacific Northwest, environmental groups, and elected officials, including Representative Frank Pallone, a Democrat from New Jersey, sent letters urging FERC to continue its current policy. “Tribes are stewards of the land and associated resources, and understand best how to manage and preserve those resources, as they have done for centuries,” wrote Chairman William Iyall of the Cowlitz Indian Tribe in Washington in a letter submitted to the commission.  Tó Nizhóní Ání, or TNA, a Diné-led water rights organization based in Black Mesa on the Navajo Nation, also submitted comments opposing the proposed hydropower project. In the 1960s, after Peabody Coal broke up sections of the resource-rich region between the Hopi and Navajo tribes for mining, the company was accused of misrepresenting the conditions of its operations and the status of mineral rights to local communities. Environmental problems soon followed, as the company’s groundwater pumping exceeded legal limits, compromising the aquifer and access to drinking water. According to Nicole Horseherder, Diné, and TNA’s executive director, this led residents of Black Mesa to use community wells. “They were now starting to have to haul all their water needs in this way,” she said. “That really changed the lifestyle of the people on Black Mesa.”  After the coal mines closed 20 years later, Black Mesa communities have focused on protecting their water resources while building a sustainable economy. But when Nature and People First’s founder Denis Payre presented the company’s plans, he seemed unaware of the tribes’ history in the region. During these presentations, Payre also made promises that if the company’s hydropower project went forward, it would benefit residents. The project would generate 1,000 jobs during construction and 100 jobs permanently, he claimed, and would help locals readily access portable drinking water. “He wasn’t understanding that our region has a history of extraction, and that is coal mining and its impact on our groundwater,” said Adrian Herder, Diné, TNA’s media organizer. “It seemed like this individual was tugging at people’s heartstrings, [saying] things that people wanted to hear.” If the commission decides to retract tribes’ ability to veto hydropower projects, it will mark a shift in the relationship between Indigenous nations and the federal government. Horseherder described such a move as the “first step in eroding whatever’s left between [these] relationships.” She is pessimistic about the commission’s decision and expects it will retract the current policy.  “The only thing I’m optimistic about is that Indigenous people know that they need to continue to fight,” she said. “I don’t see this administration waking up to their own mistakes at all.”  This story was originally published by Grist with the headline The Navajo Nation said no to a hydropower project. Trump officials want to ensure tribes can’t do that again. on Dec 10, 2025.

Georgia hashes out plan to let data centers build their own clean energy

Big companies have spent years pushing Georgia to let them find and pay for new clean energy to add to the grid, in the hopes that they could then get data centers and other power-hungry facilities online faster. Now, that concept is tantalizingly close to becoming a reality, with regulators, utility Georgia Power,…

Big companies have spent years pushing Georgia to let them find and pay for new clean energy to add to the grid, in the hopes that they could then get data centers and other power-hungry facilities online faster. Now, that concept is tantalizingly close to becoming a reality, with regulators, utility Georgia Power, and others hammering out the details of a program that could be finalized sometime next year. If approved, the framework could not only benefit companies but also reduce the need for a massive buildout of gas-fired plants that Georgia Power is planning to satiate the artificial intelligence boom.Today, utilities are responsible for bringing the vast majority of new power projects online in the state. But over the past two years, the Clean Energy Buyers Association has negotiated to secure a commitment from Georgia Power that ​“will, for the first time, allow commercial and industrial customers to bring clean energy projects to the utility’s system,” said Katie Southworth, the deputy director for market and policy innovation in the South and Southeast at the trade group, which includes major hyperscalers like Amazon, Google, Meta, and Microsoft. The ​“customer-identified resource” (CIR) option will allow hyperscalers and other big commercial and industrial customers to secure gigawatts of solar, batteries, and other energy resources on their own, not just through the utility. The CIR option isn’t a done deal yet. Once Georgia Power, the Public Service Commission, and others work out how the program will function, the utility will file a final version in a separate docket next year. And the plan put forth by Georgia Power this summer lacks some key features that data center companies want. A big point of contention is that it doesn’t credit the solar and batteries that customers procure as a way to meet future peaks in power demand — the same peaks Georgia Power uses to justify its gas-plant buildout. But as it stands, CEBA sees ​“the approved CIR framework as a meaningful step toward the ​‘bring-your-own clean energy’ model,” Southworth said — a model that goes by the catchy acronym BYONCE in clean-energy social media circles. Opening up the playing field for clean energy The CIR option is technically an addition to Georgia Power’s existing Clean and Renewable Energy Subscription (CARES) program, which requires the utility to secure up to 4 gigawatts of new renewable resources by 2035. CARES is a more standard ​“green tariff” program that leaves the utility in control of contracting for resources and making them available to customers under set terms, Southworth explained. Under the CIR option, by contrast, large customers will be able to seek out their own projects directly with a developer and the utility. Georgia Power will analyze the projects and subject them to tests to establish whether they are cost-effective. Once projects are approved by Georgia Power, built, and online, customers can take credit for the power generated, both on their energy bills and in the form of renewable energy certificates. Georgia Power’s current plan allows the procurement of up to 3 gigawatts of customer-identified resources through 2035. Letting big companies contract their own clean power is far from a new idea. Since 2014, corporate clean-energy procurements have surpassed 100 gigawatts in the United States, equal to 41% of all clean energy added to the nation’s grid over that time, according to CEBA. Tech giants have made up the lion’s share of that growth and have continued to add more capacity in 2025, despite the headwinds created by the Trump administration and Republicans in Congress. But most of that investment has happened in parts of the country that operate under competitive energy markets, in which independent developers can build power plants and solar, wind, and battery farms. The Southeast lacks these markets, leaving large, vertically integrated utilities like Georgia Power in control of what gets built. Perhaps not coincidentally, Southeast utilities also have some of the country’s biggest gas-plant expansion plans. A lot of clean energy projects could use a boost from power-hungry companies. According to the latest data from the Southern Energy Renewable Association trade group, more than 20 gigawatts of solar, battery, and hybrid solar-battery projects are now seeking grid interconnection in Georgia. “The idea that a large customer can buy down the cost of a clean energy resource to make sure it’s brought onto the grid to benefit them and everybody else, because that’s of value to them — that’s theoretically a great concept,” said Jennifer Whitfield, senior attorney at the Southern Environmental Law Center, a nonprofit that’s pushing Georgia regulators to find cleaner, lower-cost alternatives to Georgia Power’s proposed gas-plant expansion. ​“We’re very supportive of the process because it has the potential to be a great asset to everyone else on the grid.” Isabella Ariza, staff attorney at the Sierra Club’s Beyond Coal Campaign, said CEBA deserves credit for working to secure this option for big customers in Georgia. In fact, she identified it as one of the rare bright spots offsetting a series of decisions from Georgia Power and the Public Service Commission that environmental and consumer advocates fear will raise energy costs and climate pollution.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.