Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

From rats to foxes: How gentrification transforms cities' wildlife populations

News Feed
Tuesday, April 16, 2024

Low-income urban residents get rats and pigeons. But when the wealthy move in, they get species like rabbits and flying squirrels. As gentrification displaces lower-income people from American neighborhoods, the animal populations in the areas they're leaving behind are shifting toward local species less typically associated with city environments, a new study has found.  The findings, published Monday in the Proceedings of the National Academy of Sciences (PNAS), shed new light on the complex impacts that human demographics exert on the wildlife of American cities. In particular, the researchers focused on what happens as neighborhoods gentrify — or experience an influx of whiter, wealthier and more educated inhabitants. The study draws from the rich tradition of urban ecology, which seeks to understand how the structure of cities — which are home to 56 percent of the world's people — influences the growing populations of wild plants and animals that live within them. One focus of that research is the linked effects that human development policies can have on people and animals alike, lead author Mason Fidino, an ecologist at the Urban Wildlife Institute of Chicago’s Lincoln Park Zoo, told The Hill. The extent to which those policies can push minority communities “out of places where they've been living for decades and also shift mammal communities is absolutely astounding,” Fidino said.  “At the end of the day, there are some aspects of nature that are chronically inaccessible” to millions of Americans, he added.  The implementation of development policies leads to rising property values and more expensive rents, often pricing out neighborhoods' original residents in what can become a cascade of complete demographic transition — as has occurred in many now-trendy zones of cities like Los Angeles, New York or Chicago that were once bastions of middle- and working-class minority communities.  At the same time, gentrification has led to more investment in parks and greenspaces, in many cities giving rise to dramatic shifts in mammal populations that in some cases have driven the creation of new and distinctive habitats in the heart of those urban landscapes.  That change comes with a bitter irony for those priced out, Fidino noted. “The people that have been moved out of those areas don't get those environmental benefits that may come along with them.” In many cities, this transition has led to an environmental inequality that parallels the social kind: Americans moving into once low-income neighborhoods are far more likely than the areas' original inhabitants to catch a sudden glimpse of an interesting mammal. By contrast, lower-income residents would have been more likely to spot a species that is highly adapted to life in the urban jungle, like a rat or pigeon. Fidino emphasized that the problem wasn’t just that lower-income people were seeing less interesting animals.  “I don't necessarily want to say that if you live next to a raccoon, you’re benefiting from that,” he said.  “But if you live in a species-rich area, you’re having the opportunity to have positive interactions — and the potential for those interactions is something that people are being excluded from.” Even for those who don’t love coyotes, armadillos or possums — or who just don’t want to live next to them — the change in the community of wild mammals in a neighborhood points to larger transitions and more troubling inequities when it comes to access to nature. A robust line of study over the past decade has established that access to nature makes people healthier both mentally and physically. For example, a 2017 study in the British Journal of Psychiatry found that access to green spaces significantly improved the mental health — and reduced the stress — of those living nearby.  The clinical benefits are notable. A February study in PNAS found that Texas communities with more access to green space had lower rates of people seeking treatment for mental health concerns — even once researchers controlled for socioeconomic status. But these benefits are not shared equally. In what is sometimes called “the luxury effect,” urban animal biodiversity across the developed world tends to correspond to wealth — an idea that holds even in the middle of relatively dense cities. (For example, a 2011 study found that in Phoenix wild birds were more common in richer areas of the city.) That inequality isn’t an accident. It in large part stems from racist land-use and zoning practices, according to a 2020 paper in the journal Science by Christopher Schell, one of the coauthors on Fidino’s PNAS paper. Schell and his fellow researchers found that neighborhoods with histories of segregation or redlining — a discriminatory housing practice that included a lack of loans or municipal spending on green space in certain areas — still have significantly less biodiversity than wealthier, whiter neighborhoods.  In a striking metric of the long shadow of American discrimination, Schell’s team found that the evolution of urban animals was at the time of their research largely driven by factors rooted in racism. Animals in lower-income areas tended to have greater levels of inbreeding — a result of more cramped habitats with less tree cover and connections to other population groups — and more exposure to heat and pollution. “Because structural inequalities form the foundation of city infrastructure,” the paper found, “inequality among humans defines the ecological setting and evolutionary trajectories for all urban organisms." To Fidino, Schell’s research suggested a new line of investigation. Over the past two decades, a return of investment and development to once-neglected neighborhoods has meant a significant increase in spending on restoring parks, planting trees and converting power and sewer easements into publicly accessible greenspaces.  That trend — sometimes called “green gentrification” — tended to raise property values, helping to price out many neighborhoods’ original inhabitants. That led to an obvious question: What had those changes done to local animal populations, and what might that say about the changing dynamics of how nature functions in American cities? This required a staggeringly complicated analysis. The PNAS study is based on a vast and diverse array of data: nearly 200,000 days of camera trap surveillance, taken over three years across almost 1,000 sites in 23 U.S. cities each with a unique mammal population, pattern of urban development and interaction between the two. Putting the study together required many different steps. The dozens of researchers involved in the project had to come up with a scientifically rigorous definition of gentrification that could apply across nearly two-dozen cities; build out and parse the data from a national network of camera traps; and create a mathematical framework that could sift the broader signal out of all that noise. The team looked at terrestrial mammals for two reasons. First because unlike birds, they have to move on foot directly through the city, which makes them particularly responsive to changes in ground cover. Second, the Lincoln Park Zoo’s Urban Wildlife Information Network — a national network of camera traps, which triggered when animals walked in front of them — had begun to yield significant data on the mammals found in parks and green spaces across the country.  Finally, the presence of mammals was indicative of many of the same features that make landscapes congenial to people. Since mammals must get all their needs met by the natural features in a neighborhood, their prevalence in an area can demonstrate how good those features are at providing shade, shelter, clean water and food — which also appeal to people, but can be hard to study directly. Across the U.S., mid-sized predators like coyotes and racoons, for example, tend to be more likely to colonize and stick around wealthy white neighborhoods, according to a 2016 study in Animal Conservation — the kind of trend that Fidino suggested indicates those areas also have food for such animals.  “If you have a predator living in the area, you already know that there’s prey, right?” he said. “We couldn't go out and survey all the different yards across 25 different cities — but we can use these patterns that we're observing in mammal communities and relate them back to changes in the landscape.” One finding came as little surprise. The biggest element linked to mammal prevalence in American neighborhoods was not whether the area was gentrifying, but the extent to which it was covered in impervious surfaces like asphalt and concrete.  A heavily gentrified neighborhood with a lot of impervious cover still had far lower mammal biodiversity than a nongentrified neighborhood with a lot of green space — although gentrification did moderate the still-negative impacts of a lot of asphalt and concrete. Other findings were more striking. Across most of the U.S., gentrification correlated to what biologists call “alpha diversity,” or healthier populations of the same animals found elsewhere in the region. But in a few cities — largely on the West Coast — gentrification instead correlated to what biologists call "beta diversity," a different species mix being found in green spaces than in the surrounding areas. Why? “Everyone has their pet theory,” Fidino said. Maybe East Coast cities are centuries older, so their wildlife has been made more homogenous by centuries of pressure from European settlement. Maybe they are denser, so mammal species have a harder time finding their way across the concrete from the isolated park ecosystems in which they’re trapped, even if those parks are more welcoming than they used to be. But Fidino cautioned against leaning too hard on those explanations. In experimental science, the practice of coming up with stories to explain patterns in the data after the fact is called HARKing, for “hypothesizing after the results are known” — which leaves researchers at risk of being seduced by an intuitive-seeming explanation that they haven’t actually tested.  The findings also point to another big question: Is it possible to have the habitat-restoring benefits of green gentrification without the accompanying displacement of human residents?  It’s a thorny problem, Fidino said, because investment in green spaces — a neighborhood amenity whose presence drives up rents, home prices and property taxes — is so tied to the processes by which gentrification happens. “Creating more green spaces is normally viewed as an economic development strategy, right? And that's kind of the thing that needs to be combated for the most part,” Fidino said. “But that's difficult, because how do you disentangle urban green space development from Western capitalism? That’s what would need to happen for this to be much more equitable: for cities to view urban green space as a human right, versus the way that it's typically done now.”

Low-income urban residents get rats and pigeons. But when the wealthy move in, they get species like rabbits and flying squirrels. As gentrification displaces lower-income people from American neighborhoods, the animal populations in the areas they're leaving behind are shifting toward local species less typically associated with city environments, a new study has found. The findings, published Monday...

Low-income urban residents get rats and pigeons. But when the wealthy move in, they get species like rabbits and flying squirrels.

As gentrification displaces lower-income people from American neighborhoods, the animal populations in the areas they're leaving behind are shifting toward local species less typically associated with city environments, a new study has found

The findings, published Monday in the Proceedings of the National Academy of Sciences (PNAS), shed new light on the complex impacts that human demographics exert on the wildlife of American cities.

In particular, the researchers focused on what happens as neighborhoods gentrify — or experience an influx of whiter, wealthier and more educated inhabitants.

The study draws from the rich tradition of urban ecology, which seeks to understand how the structure of cities — which are home to 56 percent of the world's people — influences the growing populations of wild plants and animals that live within them.

One focus of that research is the linked effects that human development policies can have on people and animals alike, lead author Mason Fidino, an ecologist at the Urban Wildlife Institute of Chicago’s Lincoln Park Zoo, told The Hill.

The extent to which those policies can push minority communities “out of places where they've been living for decades and also shift mammal communities is absolutely astounding,” Fidino said. 

“At the end of the day, there are some aspects of nature that are chronically inaccessible” to millions of Americans, he added. 

The implementation of development policies leads to rising property values and more expensive rents, often pricing out neighborhoods' original residents in what can become a cascade of complete demographic transition — as has occurred in many now-trendy zones of cities like Los Angeles, New York or Chicago that were once bastions of middle- and working-class minority communities. 

At the same time, gentrification has led to more investment in parks and greenspaces, in many cities giving rise to dramatic shifts in mammal populations that in some cases have driven the creation of new and distinctive habitats in the heart of those urban landscapes. 

That change comes with a bitter irony for those priced out, Fidino noted. “The people that have been moved out of those areas don't get those environmental benefits that may come along with them.”

In many cities, this transition has led to an environmental inequality that parallels the social kind: Americans moving into once low-income neighborhoods are far more likely than the areas' original inhabitants to catch a sudden glimpse of an interesting mammal.

By contrast, lower-income residents would have been more likely to spot a species that is highly adapted to life in the urban jungle, like a rat or pigeon.

Fidino emphasized that the problem wasn’t just that lower-income people were seeing less interesting animals. 

“I don't necessarily want to say that if you live next to a raccoon, you’re benefiting from that,” he said. 

“But if you live in a species-rich area, you’re having the opportunity to have positive interactions — and the potential for those interactions is something that people are being excluded from.”

Even for those who don’t love coyotes, armadillos or possums — or who just don’t want to live next to them — the change in the community of wild mammals in a neighborhood points to larger transitions and more troubling inequities when it comes to access to nature.

A robust line of study over the past decade has established that access to nature makes people healthier both mentally and physically. For example, a 2017 study in the British Journal of Psychiatry found that access to green spaces significantly improved the mental health — and reduced the stress — of those living nearby. 

The clinical benefits are notable. A February study in PNAS found that Texas communities with more access to green space had lower rates of people seeking treatment for mental health concerns — even once researchers controlled for socioeconomic status.

But these benefits are not shared equally. In what is sometimes called “the luxury effect,” urban animal biodiversity across the developed world tends to correspond to wealth — an idea that holds even in the middle of relatively dense cities. (For example, a 2011 study found that in Phoenix wild birds were more common in richer areas of the city.)

That inequality isn’t an accident. It in large part stems from racist land-use and zoning practices, according to a 2020 paper in the journal Science by Christopher Schell, one of the coauthors on Fidino’s PNAS paper.

Schell and his fellow researchers found that neighborhoods with histories of segregation or redlining — a discriminatory housing practice that included a lack of loans or municipal spending on green space in certain areas — still have significantly less biodiversity than wealthier, whiter neighborhoods. 

In a striking metric of the long shadow of American discrimination, Schell’s team found that the evolution of urban animals was at the time of their research largely driven by factors rooted in racism. Animals in lower-income areas tended to have greater levels of inbreeding — a result of more cramped habitats with less tree cover and connections to other population groups — and more exposure to heat and pollution.

“Because structural inequalities form the foundation of city infrastructure,” the paper found, “inequality among humans defines the ecological setting and evolutionary trajectories for all urban organisms."

To Fidino, Schell’s research suggested a new line of investigation. Over the past two decades, a return of investment and development to once-neglected neighborhoods has meant a significant increase in spending on restoring parks, planting trees and converting power and sewer easements into publicly accessible greenspaces. 

That trend — sometimes called “green gentrification” — tended to raise property values, helping to price out many neighborhoods’ original inhabitants. That led to an obvious question: What had those changes done to local animal populations, and what might that say about the changing dynamics of how nature functions in American cities?

This required a staggeringly complicated analysis. The PNAS study is based on a vast and diverse array of data: nearly 200,000 days of camera trap surveillance, taken over three years across almost 1,000 sites in 23 U.S. cities each with a unique mammal population, pattern of urban development and interaction between the two.

Putting the study together required many different steps. The dozens of researchers involved in the project had to come up with a scientifically rigorous definition of gentrification that could apply across nearly two-dozen cities; build out and parse the data from a national network of camera traps; and create a mathematical framework that could sift the broader signal out of all that noise.

The team looked at terrestrial mammals for two reasons. First because unlike birds, they have to move on foot directly through the city, which makes them particularly responsive to changes in ground cover.

Second, the Lincoln Park Zoo’s Urban Wildlife Information Network — a national network of camera traps, which triggered when animals walked in front of them — had begun to yield significant data on the mammals found in parks and green spaces across the country. 

Finally, the presence of mammals was indicative of many of the same features that make landscapes congenial to people. Since mammals must get all their needs met by the natural features in a neighborhood, their prevalence in an area can demonstrate how good those features are at providing shade, shelter, clean water and food — which also appeal to people, but can be hard to study directly.

Across the U.S., mid-sized predators like coyotes and racoons, for example, tend to be more likely to colonize and stick around wealthy white neighborhoods, according to a 2016 study in Animal Conservation  the kind of trend that Fidino suggested indicates those areas also have food for such animals. 

“If you have a predator living in the area, you already know that there’s prey, right?” he said.

“We couldn't go out and survey all the different yards across 25 different cities — but we can use these patterns that we're observing in mammal communities and relate them back to changes in the landscape.”

One finding came as little surprise. The biggest element linked to mammal prevalence in American neighborhoods was not whether the area was gentrifying, but the extent to which it was covered in impervious surfaces like asphalt and concrete. 

A heavily gentrified neighborhood with a lot of impervious cover still had far lower mammal biodiversity than a nongentrified neighborhood with a lot of green space — although gentrification did moderate the still-negative impacts of a lot of asphalt and concrete.

Other findings were more striking. Across most of the U.S., gentrification correlated to what biologists call “alpha diversity,” or healthier populations of the same animals found elsewhere in the region.

But in a few cities — largely on the West Coast — gentrification instead correlated to what biologists call "beta diversity," a different species mix being found in green spaces than in the surrounding areas.

Why? “Everyone has their pet theory,” Fidino said. Maybe East Coast cities are centuries older, so their wildlife has been made more homogenous by centuries of pressure from European settlement. Maybe they are denser, so mammal species have a harder time finding their way across the concrete from the isolated park ecosystems in which they’re trapped, even if those parks are more welcoming than they used to be.

But Fidino cautioned against leaning too hard on those explanations.

In experimental science, the practice of coming up with stories to explain patterns in the data after the fact is called HARKing, for “hypothesizing after the results are known” — which leaves researchers at risk of being seduced by an intuitive-seeming explanation that they haven’t actually tested. 

The findings also point to another big question: Is it possible to have the habitat-restoring benefits of green gentrification without the accompanying displacement of human residents? 

It’s a thorny problem, Fidino said, because investment in green spaces — a neighborhood amenity whose presence drives up rents, home prices and property taxes — is so tied to the processes by which gentrification happens.

“Creating more green spaces is normally viewed as an economic development strategy, right? And that's kind of the thing that needs to be combated for the most part,” Fidino said.

“But that's difficult, because how do you disentangle urban green space development from Western capitalism? That’s what would need to happen for this to be much more equitable: for cities to view urban green space as a human right, versus the way that it's typically done now.”

Read the full story here.
Photos courtesy of

Don’t Think Too Hard About Gum

When you chew gum, you’re essentially gnawing on plastic.

At the turn of the 20th century, William Wrigley Jr. was bent on building an empire of gum, and as part of his extensive hustle, he managed to persuade the U.S. Department of War to include his products in soldiers’ rations. His argument—baseless at the time—was that chewing gum had miraculous abilities to quench thirst, stave off hunger, and dissipate nervous tension. But he was right: Scientists have since found that gum chewing can indeed increase concentration, reduce the impulse to snack, alleviate thirst, and improve oral health.Perhaps that’s why people around the world have had the impulse to gnaw on tacky materials—roots, resins, twigs, blubber, tar made by burning birch bark—for at least 8,000 years. Today, gum is again being marketed as a panacea for wellness. You can buy gum designed to deliver energy, nutrition, stress relief, or joint health; scientists are even developing gums that can protect against influenza, herpes, and COVID. Ironically, this new era of chewing gum is manufactured with a distinctly modern ingredient, one not usually associated with wellness: plastic.By the time Wrigley began his business venture, Americans had grown accustomed to chewing gum sold as candy-coated balls or packaged sticks. The base of these chewing gums was made from natural substances such as spruce resin and chicle, a natural latex that Aztecs and Mayans chewed for hundreds if not thousands of years. Unfortunately for 20th-century Americans, the chicozapote trees that exude chicle take a long time to grow, and if they are overtapped, they die. Plus, cultivated trees don’t produce nearly as much chicle as wild trees, says Jennifer Mathews, an anthropology professor at Trinity University and the author of Chicle. In the 1950s, chicle harvesters began struggling to meet demand. So gum companies turned to the newest innovations in materials science: synthetic rubbers and plastics.Today, most companies’ gum base is a proprietary blend of synthetic and natural ingredients: If a packet lists “gum base” as an ingredient, that gum most likely contains synthetic polymers. The FDA allows gum base to contain any of dozens of approved food-grade materials—substances deemed either safe for human consumption or safe to be in contact with food. Many, though, are not substances that people would otherwise think to put in their mouth. They include polyethylene (the most common type of plastic, used in plastic bags and milk jugs), polyvinyl acetate (a plastic also found in glue), and styrene-butadiene rubber (commonly used in car tires). The typical gum base contains two to four types of synthetic plastics or rubbers, Gwendolyn Graff, a confectionery consultant, told me.Everything we love about gum today is thanks to synthetic polymers, Graff said. Polyvinyl acetate, for example, strengthens the bubble film. “If you blow a bubble, and it starts to get holes in it and deflate, that’s usually an indicator that it doesn’t have polyvinyl acetate,” Graff said. Styrene-butadiene rubber creates a bouncy chewiness that makes gum more likely to stick to itself rather than to surfaces like your teeth. Polyethylene can be used to soften gum so it doesn’t tire out your jaw. Gums with only natural polymers “can feel like they're going to fall apart in your mouth,” Graff said.Plastic gum, though, also falls apart, in a way: Gum chewing has been linked to microplastic ingestion. In a study published in December, U.K. researchers had a volunteer chew on a piece of gum for an hour, spitting into test tubes as they went. After an hour of gum chewing, the saliva collected contained more than 250,000 pieces of micro and nano plastics—comparable to the level of microplastics found in a liter of bottled water. In a study presented at a recent meeting of the American Chemical Society (which has not yet been peer-reviewed), a graduate student’s saliva contained elevated microplastic levels after she chewed several commercially available gums, including natural ones. The research on gum chewing and microplastics is still limited—these two papers effectively represent analysis of just two people’s post-chew saliva—but gum chewing has also been correlated with higher urine levels of phthalates, plastic-softening chemicals that are known endocrine disruptors.Scientists are still learning about the health impacts of microplastic ingestion, too. Microplastics find their way into all kinds of foods from packaging or contamination during manufacturing, or because the plants and animals we eat absorb and ingest microplastics themselves. As a result, microplastics have been found in human livers, kidneys, brains, lungs, intestines, placentas, and breast milk, but exactly how our bodies absorb, disperse, and excrete ingested plastic is not very well studied, says Marcus Garcia, who researches the health effects of environmental contaminants at the University of New Mexico. Some research in mice and cultured cells hint that microplastics have the potential to cause damage, and epidemiological research suggests that microplastics are associated with respiratory, digestive, and reproductive issues, as well as colon and lung cancer. But scientists are still trying to understand whether or how microplastics cause disease, which microplastics are most dangerous to human health, and how much microplastic the body can take before seeing any negative effects.The answer could affect the future of what we choose to eat—or chew. Ingesting tiny plastic particles might seem inevitable, but over the past 10 years or so, Americans have grown understandably fearful about bits of plastic making their way into our food, fretting about microwaving food in plastic containers and drinking from plastic bottles. Gum has, for the most part, not triggered those worries, but in recent years, its popularity had been dropping for other reasons. In a bid to reverse that trend, gum companies are marketing synthetic gum as a tool for wellness. Just like Wrigley, they are betting that Americans will believe in the power of gum to soothe nerves and heal ailments, and that they won’t think too hard about what modern gum really is. For anyone worried about swallowing still more plastic, after all, gum is easy enough to avoid.

A marine biologist discovered something incredible in a beer bottle on the seafloor

This story was produced in collaboration with The Dodo. One morning this week, Hanna Koch was snorkeling in the Florida Keys when she came across a brown beer bottle on the sea floor. Koch, a marine biologist for Florida’s Monroe County, picked up the bottle, planning to carry it with her and later toss it […]

This story was produced in collaboration with The Dodo. One morning this week, Hanna Koch was snorkeling in the Florida Keys when she came across a brown beer bottle on the sea floor. Koch, a marine biologist for Florida’s Monroe County, picked up the bottle, planning to carry it with her and later toss it out.  Through her dive mask, Koch peered inside to make sure it was empty.  That’s when she saw an eyeball.  “There was something staring back at me,” Koch told me.  It wasn’t just one eyeball, actually — but dozens. Inside the bottle was an octopus mom with a brood of babies. “You could see their eyes, you could see their tentacles,” Koch said in a recent interview with Vox and The Dodo. “They were fully formed.” Instead of taking the bottle with her and throwing it away like she initially intended, Koch handed it to her colleague, another marine biologist, who carefully placed it back on the sandy sea floor. Based on the images and video, Chelsea Bennice, a marine biologist at Florida Atlantic University, said the animal was likely a species of pygmy octopus — making this whole encounter even cuter.  On one hand, it’s hopeful to find life — an octopus family! — living in rubbish. “One man’s trash is another octopuse’s nursery,” as University of Miami environmental scientist Jennifer Jacquet told me when I showed her the photos. Her graduate student, Janelle Kaz, said it’s actually not uncommon for octopuses to take up residence in beer bottles. “They are highly curious and opportunistic,” Jacquet said.  But it’s also a reminder that, as Florida ecosystems decline, there are fewer and fewer places for wildlife to live. Overfishing, pollution, and climate change have devastated near-shore habitats in the Keys — and especially coral reefs — in the last few decades.  The irony, Koch told me, is that she runs a state-funded project in Monroe County to create “artificial reefs:” structures, often made of concrete, to enhance the habitat for fish, lobsters, and other sea creatures. And she was actually snorkeling that morning to figure out where to put some of the structures.  “This octopus found artificial habitat to make its home,” Koch said. “I was just like, ‘Wait momma, because I’m going to put out some better habitat for you — something that someone can’t pick up and throw away.’”

Sea Lion Bites Surfer Amid One of the Worst Outbreaks of Domoic Acid Poisoning That California Wildlife Rescuers Can Remember

Sea lions, dolphins and birds are sick and dying because of a toxic algae bloom in Southern California—and animal care organizations are overwhelmed by the scale

Volunteers with the Channel Islands Marine & Wildlife Institute in Santa Barbara, California, rescue a sick sea lion that's likely suffering from domoic acid poisoning. David Swanson / AFP via Getty Images It started as a normal surf session for RJ LaMendola. He was roughly 150 yards from the beach in Southern California, riding the waves and enjoying the peaceful solitude. But the situation quickly turned violent when a sea lion emerged from the water and charged at LaMendola. The 20-year surfing veteran tried to remain calm as he frantically paddled back to shore, but the sea lion was behaving unusually—“like some deranged predator,” LaMendola wrote in a widely shared post on Facebook. The sea lion made contact, delivering a hard bite on LaMendola’s left buttock that pierced through his wetsuit. “Never have I had one charge me, especially at that ferocity, mouth open,” LaMendola tells the Ventura County Star’s Stacie N. Galang and Cheri Carlson. “It really was out of, like, a horror movie.” Eventually, LaMendola made it back to the sand and drove himself to a nearby emergency room. After being treated, he contacted local wildlife authorities. The most likely explanation for the sea lion’s abnormally aggressive behavior? The creature was probably suffering from domoic acid poisoning, which results from toxic algae blooms. Across Southern California, authorities are grappling with one of the worst outbreaks of domoic acid poisoning they’ve ever seen. Dozens of sea lions and dolphins have been affected by the condition in recent weeks, reports the Los Angeles Times’ Summer Lin. Birds are also turning up dead, according to the Los Angeles Daily News’ Erika I. Ritchie. At least 140 sick sea lions are being cared for at the Marine Mammal Care Center in San Pedro, per the Los Angeles Times, because they have a 50 to 65 percent chance of surviving if they receive treatment. Roughly another 45 are being cared for at the Pacific Marine Mammal Center in Laguna Beach, reports the Los Angeles Daily News. SeaWorld San Diego has rescued another 15 this year, reports KGTV’s Jane Kim. Other sea lions have been found dead on area beaches. “This morning, we had three calls within 30 minutes of daylight breaking,” Glenn Gray, CEO of the Pacific Marine Mammal Center, told the Los Angeles Daily News on March 18. “That’s the magnitude of it.” Members of the public are being urged to report any sick, distressed or dead animals they find on the beach. Beachgoers should also stay away from the animals and give them space. David Swanson / AFP via Getty Images Dozens of dolphins, meanwhile, are washing up dead or close to death on beaches. Veterinarians are euthanizing the dolphins, because they rarely survive domoic acid poisoning, per the Los Angeles Times. “It’s the only humane option,” says John Warner, CEO of the Marine Mammal Care Center, to the Westside Current’s Jamie Paige. “It’s an awful situation.” A similar outbreak occurred in 2023, killing more than 1,000 sea lions. But officials say this year is shaping up to be worse. The harmful algae bloom started roughly five weeks ago. During a bloom, environmental conditions cause microscopic phytoplankton to proliferate. Some species of phytoplankton produce domoic acid, which then accumulates in filter-feeding fish and shellfish. Marine mammals become sickened when they eat the affected fish and shellfish. (Humans can also get sick from eating contaminated fish, shellfish and crustaceans.) In marine mammals, symptoms of domoic acid poisoning include seizures, lethargy, foaming at the mouth and a neck-craning behavior known as “stargazing.” Biting incidents—like the one LaMendola endured—are rare, but sickened animals have been known to behave aggressively. “The neurotoxin is crippling and killing sea lions and dolphins,” says Ruth Dover, managing director of the nonprofit Channel Islands Marine & Wildlife Institute, to the Ventura County Star. The bloom likely started when cold water from deep in the Pacific Ocean rose to the surface in February. Now, it also appears to be spreading closer to the shore. Researchers are monitoring the bloom, but so far, they have no indication of how long it will last. Authorities say toxic algae blooms are getting worse and happening more frequently because of climate change, agricultural runoff and other human-caused factors. This is the fourth straight year a domoic acid-producing bloom has developed off Southern California, as Dave Bader, chief operating officer of the Marine Mammal Care Center, tells KNX News’ Karen Adams. “We don’t know what the long-term impacts will be for having so many consecutive years of this toxic bloom,” Bader adds. “But [dolphins are] a sentinel species. They’re telling us about the health of the ocean, and when we see marine life dying, and we’re seeing it in increasing levels with more frequency, the ocean’s telling us something’s off.” The ongoing outbreak is taking its toll on Southern California veterinarians, volunteers and beachgoers. The incidents are particularly heartbreaking for lifeguards, who typically comfort dying dolphins—and keep beachgoers away—until authorities can arrive. Members of the public are encouraged to report any distressed, sick or dead animals they find on the beach. And, more importantly, they should leave the animals alone. Authorities say pushing a sick creature back into the ocean will likely cause it to drown. Dolphins also become especially agitated when they’re out of the water and people are around—to the point that they can die from fear. “People need to leave them alone and not crowd around them,” Warner tells the Los Angeles Times. “Selfies kill animals, so use your zoom, and stay away.” Get the latest stories in your inbox every weekday.

Deep Sea Mining Impacts Still Felt Forty Years On, Study Shows

By David StanwaySINGAPORE (Reuters) - A strip of the Pacific Ocean seabed that was mined for metals more than 40 years ago has still not recovered,...

SINGAPORE (Reuters) - A strip of the Pacific Ocean seabed that was mined for metals more than 40 years ago has still not recovered, scientists said late on Wednesday, adding weight to calls for a moratorium on all deep sea mining activity during U.N.-led talks this week.A 2023 expedition to the mineral-rich Clarion Clipperton Zone by a team of scientists led by Britain's National Oceanography Centre found that the impacts of a 1979 test mining experiment were still being felt on the seafloor, a complex ecosystem hosting hundreds of species.The collection of small "polymetallic nodules" from an eight-metre strip of the seabed caused long-term sediment changes and reduced the populations of many of the larger organisms living there, though some smaller, more mobile creatures have recovered, according to the study, published in Nature journal."The evidence provided by this study is critical for understanding potential long-term impacts," said NOC expedition leader Daniel Jones. "Although we saw some areas with little or no recovery, some animal groups were showing the first signs of recolonisation and repopulation."Delegations from 36 countries are attending a council meeting of the U.N.'s International Seabed Authority in Kingston, Jamaica this week to decide whether mining companies should be allowed to extract metals like copper or cobalt from the ocean floor.As they deliberate over hundreds of proposed amendments to a 256-page draft mining code, environmental groups have called for mining activities to be halted, a move supported by 32 governments and 63 large companies and financial institutions."This latest evidence makes it even more clear why governments must act now to stop deep sea mining before it ever starts," said Greenpeace campaigner Louise Casson.While few expect a final text to be completed by the time the latest round of talks ends on March 28, Canada's The Metals Company plans to submit the first formal mining application in June.On Friday, delegates will discuss what actions should be taken if an application to mine is submitted before the regulations have been completed.TMC said at a briefing last week that it had a legal right to submit an application at any time and hoped that the ISA would bring clarity to the application process.TMC says the environmental impact of deep sea mining is significantly smaller than conventional terrestrial mining."You just have to move a lot less material to get the same amount of metal - higher grade means better economics, but also means lower environmental impacts," said Craig Shesky, TMC's chief financial officer.(Reporting by David Stanway; Editing by Saad Sayeed)Copyright 2025 Thomson Reuters.

In the hills of Italy, wolves returned from the brink. Then the poisonings began

Strict laws saved the country’s wolves from extinction. Now conservationists believe their relaxation could embolden vigilantesHigh on a mountain pass near the town of Cocullo in central Italy lay six black sacks. Inside were nine wolves, including a pregnant female and seven youngsters – an entire pack. They had eaten slabs of poisoned veal left out a few days earlier, dying over the hours that followed, snarls of pain fixed on their faces.Three griffon vultures and two ravens were also killed, probably alongside more animals that went into hiding, dying out of sight. Poison creates a succession of death, spreading through entire food chains and contaminating land and water for years. Continue reading...

High on a mountain pass near the town of Cocullo in central Italy lay six black sacks. Inside were nine wolves, including a pregnant female and seven youngsters – an entire pack. They had eaten slabs of poisoned veal left out a few days earlier, dying over the hours that followed, snarls of pain fixed on their faces.Three griffon vultures and two ravens were also killed, probably alongside more animals that went into hiding, dying out of sight. Poison creates a succession of death, spreading through entire food chains and contaminating land and water for years.The incident in 2023, was described as “culturally medieval” by national park authorities. “It was a bad day for the whole team,” says Nicolò Borgianni, a vulture field officer with Rewilding Apennines, who still remembers what a beautiful May day it was when the animals perished: alpine flowers poking through the grass and snow still dusting mountain peaks on the horizon from the 1,300-metre viewpoint. “But there are many cases like this one.”The bags containing nine wolves poisoned in Cocullo. No one was prosecuted for the deaths. Photograph: HandoutLike all poisoning events in this area, no one was prosecuted. The corpses were disposed of and life moved on. Now the ground is grubbed up from wild boars digging their snouts in the dirt looking for bulbs to eat.Downgrading wolf protection is a misguided decision. It offers no real help to rural communitiesIn the 1970s, wolves were on the brink of extinction in Italy, but thanks to strict protections and conservation efforts, there are now more than 3,000 of them. In many areas of Europe, farmers are having to learn to live alongside wolves again as they return to places they have been absent from for hundreds of years – and many are concerned that they prey on livestock. The story unfolding in this small valley in Italy is being repeated all over Europe. “Farmers feel abandoned by government, so they solve their problems on their own,” says Borgianni.From March 2025, the EU is relaxing its protections from “strictly protected” to “protected”, which means if wolves are perceived as a threat to rural communities, states can organise culls. Poisonings such as the one in Cocullo will remain illegal, but conservationists fear the relaxation of protections will empower vigilantes.Angela Tavone, a communications manager from Rewilding Apennines, is worried this will create more “chains of death” like the one two years ago. “Groups of farmers can feel more free to act against wolves because of the change in the EU law,” she says.Angela Tavone and Nicolò Borgianni inspect a horse skull. Photograph: Luigi Filice/The GuardianWhoever killed the wolf pack in 2023 failed to keep wolves away. Months later, another pack moved in. Nearly two years later, on that same spot, there are half a dozen wolf droppings, some just a few weeks old. The pack’s territory overlaps with mountain pastures used for cattle and sheep in spring and summer. Wild boar makes up most of the wolves’ diet here, but you can also spot hairs from cows or horses in the droppings. Borgianni estimates about 10% of their diet is livestock. One pack monitored by scientists in the region appeared to be eating closer to 70% during winter.Vultures are often the sentinels of a poisoning event. The Apennines has the highest number of GPS-tagged vultures in a single population, so observers know something is wrong if their tags stop moving. “If you investigate, you find these incidents,” says Borgianni. They are social animals and up to 60 birds can feed on a single carcass, so dozens can be wiped out quickly. Since 2021 the Rewilding Apennines team has picked up 85 carcasses across all species.An Apennine wolf pup carrying part of a red deer in Abruzzo, Italy. One poisoning event can kill a whole pack. Photograph: Nature Picture Library/AlamyPredator poisoning is an issue across Europe – and the world – but we know little about the extent of it, because animals generally die out of sight. Farmers say these apex predators threaten their livelihoods – and resolving the conflicts is complex.Down in the valley, Cristian Guido’s family farm and restaurant Il Castellaccio back on to fresh mountain pastures. Twenty years ago, when he started farming, there were not many wolves around. Two nights ago, CCTV cameras captured a pair of wolves wandering through the yard. Guido can sometimes hear them howling from the woods by the farm.Cristian Guido at his family farm and restaurant. Photograph: Luigi Filice/The GuardianFrom May, his 90 sheep go up into the hills every day to fatten on the succulent grasses, and come down in the evenings. One day last October, 18 of them didn’t come back. Guido believes wolves were to blame, perhaps chasing the sheep off a cliff.I find wolves beautiful, but I keep asking for help. It is just not possible to keep them awayThere was no evidence they had been killed by a wolf (there often is not) so he got no compensation. Now, when he takes his animals up in the morning, he doesn’t know if they will all come back. “I fear that will happen again,” he says.He is not alone. “Other farms suffered the same loss,” he says. In the past few years, half a dozen dead wolves have been hung up by roads and bus stops by people protesting at their return.“I find wolves beautiful, but I keep asking for help. It is just not possible to keep them away. And I’m aware if you shoot them, you will get more and more damage,” he says. Guido believes protections for wolves should not have been downgraded, but that farmers must be given more support.The bones of a horse in ⁨Cocullo⁩, ⁨Abruzzo. Photograph: Luigi Filice/The GuardianThis would include making compensation easier to claim and quicker to be distributed. There should be more support for farmers constructing wolf-proof fences near their properties, he believes.Research this year looking at wolf-farmer conflicts in northern Greece found wolves were often scapegoats for deep-rooted issues, such as financial challenges, poor government policies on protection of livelihoods, a changing climate, lack of services and rural depopulation. “Our findings emphasise that while wolves impact farmers, economic and policy-related factors play a greater role,” the researchers concluded. The study found fair compensation schemes were essential for coexistence.These findings are echoed by a coalition of NGOs, including BirdLife Europe, ClientEarth and the European Environmental Bureau, which say that instead of providing support for farmers living alongside wolves, the EU has allowed them to be culled. “Downgrading wolf protection is a misguided decision that prioritises political gains over science and will further polarise the debate,” say the NGOs. “It offers no real help to rural communities.”Virginia Sciore is a farmer with 150 goats grazing on pastures in the Morrone mountains. Since 2018 she has lost five goats. “You can see in the eyes of the goats they are terrified – something happened in the mountain,” she says. Sometimes, she finds a collar or tuft of hair, but usually they disappear without a trace, so she doesn’t claim compensation. “I don’t know if it was a wolf,” she says.“The majority of farmers don’t believe in coexistence,” Sciore says. “They have stories about wolves that have been imported. They want to believe these things. People are angry and it’s projected on to the wolf.”Virginia Sciore has lost five of her 150 goats since 2018. Photograph: Angela Tavone/Rewilding ApenninesThe conflict over wolves comes amid a wider shift away from environmental protections across Europe. Last year, EU leaders scaled back plans to cut pollution and protect habitats after angry protests from farmers, as a law to restore nature was turned into a political punching bag. “It’s a low moment historically to face this issue,” says Tavone.The Cucollo incident was a turning point for the Rewilding Apennines team. In response, they created their first anti-poison dog unit. A malinois dog called Wild – who at six months old is still in training – will, in the coming months, sniff out potential poisoning incidents.As spring approaches, so too does the most dangerous time for poisoning events, as farmers look to protect young and vulnerable livestock. Catching poisoning incidents quickly is key – and Wild will help with that. Those fighting to protect wildlife are increasing their efforts. “The war is still going on,” says Tavone.The mountains around Cocullo⁩. As spring approaches, poisoning events usually spike as farmers try to protect young animals. Photograph: Luigi Filice/The Guardian

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.