Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Explosion of power-hungry data centers could derail California clean energy goals

News Feed
Monday, August 12, 2024

Near the Salton Sea, a company plans to build a data center to support artificial intelligence that would cover land the size of 15 football fields and require power that could support 425,000 homes. In Santa Clara — the heart of Silicon Valley — electric rates are rising as the municipal utility spends heavily on transmission lines and other infrastructure to accommodate the voracious power demand from more than 50 data centers, which now consume 60% of the city’s electricity.And earlier this year, Pacific Gas & Electric told investors that its customers have proposed more than two dozen data centers, requiring 3.5 gigawatts of power — the output of three new nuclear reactors. Vantage Data Center in Santa Clara is equipped with its own electrical substations. (Paul Kuroda / For The Times) While the benefits and risks of AI continue to be debated, one thing is clear: The technology is rapacious for power. Experts warn that the frenzy of data center construction could delay California’s transition away from fossil fuels and raise electric bills for everyone else. The data centers’ insatiable appetite for electricity, they say, also increases the risk of blackouts.Even now, California is at the verge of not having enough power. An analysis of public data by the nonprofit GridClue ranks California 49th of the 50 states in resilience — or the ability to avoid blackouts by having more electricity available than homes and businesses need at peak hours.“California is working itself into a precarious position,” said Thomas Popik, president of the Foundation for Resilient Societies, which created GridClue to educate the public on threats posed by increasing power use.The state has already extended the lives of Pacific Gas & Electric Co.’s Diablo Canyon nuclear plant as well as some natural gas-fueled plants in an attempt to avoid blackouts on sweltering days when power use surges. Worried that California could no longer predict its need for power because of fast-rising use, an association of locally run electricity providers called on state officials in May to immediately analyze how quickly demand was increasing. The California Community Choice Assn. sent its letter to the state energy commission after officials had to revise their annual forecast of power demand upward because of skyrocketing use by Santa Clara’s dozens of data centers. A large NTT data center rises in a Santa Clara neighborhood. (Paul Kuroda / For The Times) The facilities, giant warehouses of computer servers, have long been big power users. They support all that Americans do on the internet — from online shopping to streaming Netflix to watching influencers on TikTok.But the specialized chips required for generative AI use far more electricity — and water — than those that support the typical internet search because they are designed to read through vast amounts of data.A ChatGPT-powered search, according to the International Energy Agency, consumes 10 times the power as a search on Google without AI.And because those new chips generate so much heat, more power and water is required to keep them cool.“I’m just surprised that the state isn’t tracking this, with so much attention on power and water use here in California,” said Shaolei Ren, associate professor of electrical and computer engineering at UC Riverside.Ren and his colleagues calculated that the global use of AI could require as much fresh water in 2027 as that now used by four to six countries the size of Denmark.Driving the data center construction is money. Today’s stock market rewards companies that say they are investing in AI. Electric utilities profit as power use rises. And local governments benefit from the property taxes paid by data centers. Transmission lines are reflected on the side of the NTT data center in Santa Clara. (Paul Kuroda / For The Times) Silicon Valley is the world’s epicenter of AI, with some of the biggest developers headquartered there, including Alphabet, Apple and Meta. OpenAI, the creator of ChatGPT, is based in San Francisco. Nvidia, the maker of chips needed for AI, operates from Santa Clara.The big tech companies leading in AI, which also include Microsoft and Amazon, are spending billions to build new data centers around the world. They are also paying to rent space for their servers in so-called co-location data centers built by other companies.In a Chicago suburb, a developer recently bought 55 homes so they could be razed to build a sprawling data center campus.Energy officials in northern Virginia, which has more data centers than any other region in the world, have proposed a transmission line to shore up the grid that would depend on coal plants that had been expected to be shuttered.In Oregon, Google and the city of The Dalles fought for 13 months to prevent the Oregonian from getting records of how much water the company’s data centers were consuming. The newspaper won the court case, learning the facilities drank up 29% of the city’s water.By 2030, data centers could account for as much as 11% of U.S. power demand — up from 3% now, according to analysts at Goldman Sachs.“We must demand more efficient data centers or else their continued growth will place an unsustainable strain on energy resources, impact new home building, and increase both carbon emissions and California residents’ cost of electricity,” wrote Charles Giancarlo, chief executive of the Santa Clara IT firm Pure Storage.Santa Clara a top market for data centers (Paul Kuroda / For The Times) California has more than 270 data centers, with the biggest concentration in Santa Clara. The city is an attractive location because its electric rates are 40% lower than those charged by PG&E.But the lower rates come with a higher cost to the climate. The city’s utility, Silicon Valley Power, emits more greenhouse gas than the average California electric utility because 23% of its power for commercial customers comes from gas-fired plants. Another 35% is purchased on the open market where the electricity’s origin can’t be traced.The utility also gives data centers and other big industrial customers a discount on electric rates.While Santa Clara households pay more for each kilowatt hour beyond a certain threshold, the rate for data centers declines as they use more power.The city receives millions of dollars of property taxes from the data centers. And 5% of the utility’s revenue goes to the city’s general fund, where it pays for services such as road maintenance and police.An analysis last year by the Silicon Valley Voice newspaper questioned the lower rates data centers pay compared with residents.“What impetus do Santa Clarans have to foot the bill for these environmentally unfriendly behemoth buildings?” wrote managing editor Erika Towne.In October, Manuel Pineda, the utility’s top official, told the City Council that his team was working to double power delivery over the next 10 years. “We prioritize growth as a strategic opportunity,” he said.He said usage by data centers was continuing to escalate, but the utility was nearing its power limit. He said 13 new data centers were under construction and 12 more were moving forward with plans.“We cannot currently serve all data centers that would like to be in Santa Clara,” he said. Dozens of data centers have been built for artificial intelligence and the internet in Santa Clara. (Paul Kuroda / For The Times) To accommodate increasing power use, the city is now spending heavily on transmission lines, substations and other infrastructure. At the same time, electric rates are rising. Rates had been increasing by 2% to 3% a year, but they jumped by 8% in January 2023, another 5% in July 2023 and 10% last January.Pineda told The Times that it wasn’t just the new infrastructure that pushed rates up. The biggest factor, he said, was a spike in natural gas prices in 2022, which increased power costs.He said residential customers pay higher rates because the distribution system to homes requires more poles, wires and transformers than the system serving data centers, which increases maintenance costs.Pineda said the city’s decisions to approve new data centers “are generally based on land use factors, not on revenue generation.”Loretta Lynch, former chair of the state’s public utilities commission, noted that big commercial customers such as data centers pay lower rates for electricity across the state. That means when transmission lines and other infrastructure must be built to handle the increasing power needs, residential customers pick up more of the bill.“Why aren’t data centers paying their fair share for infrastructure? That’s my question,” she said.PG&E eyes profits from boom The grid’s limited capacity has not stopped PG&E from wooing companies that want to build data centers.“I think we will definitely be one of the big ancillary winners of the demand growth for data centers,” Patricia Poppe, PG&E’s chief executive, told Wall Street analysts on an April conference call.Poppe said she recently invited the company’s tech customers to an event at a San José substation.“When I got there, I was pleasantly surprised to see AWS, Microsoft, Apple, Google, Equinix, Cisco, Western Digital Semiconductors, Tesla, all in attendance. These are our customers that we serve who want us to serve more,” she said on the call. “They were very clear: they would build … if we can provide.”In June, PG&E revealed it had received 26 applications for new data centers, including three that need at least 500 megawatts of power, 24 hours a day. In all, the proposed data centers would use 3.5 gigawatts. That amount of power could support nearly 5 million homes, based on the average usage of a California household of 6,174 kilowatts a year.In the June presentation, PG&E said the new data centers would require it to spend billions of dollars on new infrastructure.Already PG&E can’t keep up with connecting customers to the grid. It has fallen so far behind on connecting new housing developments that last year legislators passed a law to try to shorten the delays. At that time, the company told Politico that the delays stemmed from rising electricity demand, including from data centers.In a statement to The Times, PG&E said its system was “ready for data centers.”The company said its analysis showed that adding the data centers would not increase bills for other customers.Most of the year, excluding extreme hot weather, its grid “is only 45% utilized on average,” the company said.“Data centers’ baseload will enable us to utilize more of this percentage and deliver more per customer dollar,” the company said. “For every 1,000 MW load from data centers we anticipate our customers could expect 1-2% saving on their monthly electricity bill.”The company added that it was “developing tools to ensure that every customer can cost-effectively connect new loads to the system with minimal delay.”Lynch questioned the company’s analysis that adding data centers could reduce bills for other customers. She pointed out that utilities earn profits by investing in new infrastructure. That’s because they get to recover that cost — plus an annual rate of return — through rates billed to all customers.“The more they spend, the more they make,” she said.In the desert, cheap land and green energy A geothermal plant viewed from across the Salton Sea in December 2022. (Gina Ferazzi / Los Angeles Times) The power and land constraints in Santa Clara and other cities have data center developers looking for new frontiers.“On the edge of the Southern California desert in Imperial County sits an abundance of land,” begins the sales brochure for the data center that a company called CalEthos is building near the south shore of the Salton Sea.Electricity for the data center’s servers would come from the geothermal and solar plants built near the site in an area that has become known as Lithium Valley.The company is negotiating to purchase as much as 500 megawatts of power, the brochure said.Water for the project would come from the state’s much fought over allotment from the Colorado River.Imperial County is one of California’s poorest counties. More than 80% of its population are Latino. Many residents are farmworkers.Executives from Tustin-based CalEthos told The Times that by using power from the nearby geothermal plants it would help the local community.“By creating demand for local energy, CalEthos will help accelerate the development of Lithium Valley and its associated economic benefits,” Joel Stone, the company’s president, wrote in an email.“We recognize the importance of responsible energy and water use in California,” Stone said. “Our data centers will be designed to be as efficient as possible.”For example, Stone said that in order to minimize water use, CalEthos plans a cooling system where water is recirculated and “requires minimal replenishment due to evaporation.” Already, a local community group, Comite Civico del Valle, has raised concerns about the environmental and health risks of one of the nearby geothermal plants that plans to produce lithium from the brine brought up in the energy production process.One of the group’s concerns about the geothermal plant is that its water use will leave less to replenish the Salton Sea. The lake has been decreasing in size, creating a larger dry shoreline that is laden with bacteria and chemicals left from decades of agricultural runoff. Scientists have tied the high rate of childhood asthma in the area to dust from the shrinking lake’s shores.James Blair, associate professor of geography and anthropology at Cal Poly Pomona, questioned whether the area was the right place for a mammoth data center.“Data centers drain massive volumes of energy and water for chillers and cooling towers to prevent servers from overheating,” he said. Blair said that while the company can tell customers its data center is supported by environmentally friendly solar and geothermal power, it will take that renewable energy away from the rest of California’s grid, making it harder for the state to meet its climate goals. Newsletter Toward a more sustainable California Get Boiling Point, our newsletter exploring climate change, energy and the environment, and become part of the conversation — and the solution. You may occasionally receive promotional content from the Los Angeles Times.

Experts warn that a frenzy of data center construction could delay California's transition away from fossil fuels and raise everyone's electric bills.

Near the Salton Sea, a company plans to build a data center to support artificial intelligence that would cover land the size of 15 football fields and require power that could support 425,000 homes.

In Santa Clara — the heart of Silicon Valley — electric rates are rising as the municipal utility spends heavily on transmission lines and other infrastructure to accommodate the voracious power demand from more than 50 data centers, which now consume 60% of the city’s electricity.

And earlier this year, Pacific Gas & Electric told investors that its customers have proposed more than two dozen data centers, requiring 3.5 gigawatts of power — the output of three new nuclear reactors.

An electrical substation.

Vantage Data Center in Santa Clara is equipped with its own electrical substations.

(Paul Kuroda / For The Times)

While the benefits and risks of AI continue to be debated, one thing is clear: The technology is rapacious for power. Experts warn that the frenzy of data center construction could delay California’s transition away from fossil fuels and raise electric bills for everyone else. The data centers’ insatiable appetite for electricity, they say, also increases the risk of blackouts.

Even now, California is at the verge of not having enough power. An analysis of public data by the nonprofit GridClue ranks California 49th of the 50 states in resilience — or the ability to avoid blackouts by having more electricity available than homes and businesses need at peak hours.

“California is working itself into a precarious position,” said Thomas Popik, president of the Foundation for Resilient Societies, which created GridClue to educate the public on threats posed by increasing power use.

The state has already extended the lives of Pacific Gas & Electric Co.’s Diablo Canyon nuclear plant as well as some natural gas-fueled plants in an attempt to avoid blackouts on sweltering days when power use surges.

Worried that California could no longer predict its need for power because of fast-rising use, an association of locally run electricity providers called on state officials in May to immediately analyze how quickly demand was increasing.

The California Community Choice Assn. sent its letter to the state energy commission after officials had to revise their annual forecast of power demand upward because of skyrocketing use by Santa Clara’s dozens of data centers.

A large data center rises in an urban business district.

A large NTT data center rises in a Santa Clara neighborhood.

(Paul Kuroda / For The Times)

The facilities, giant warehouses of computer servers, have long been big power users. They support all that Americans do on the internet — from online shopping to streaming Netflix to watching influencers on TikTok.

But the specialized chips required for generative AI use far more electricity — and water — than those that support the typical internet search because they are designed to read through vast amounts of data.

A ChatGPT-powered search, according to the International Energy Agency, consumes 10 times the power as a search on Google without AI.

And because those new chips generate so much heat, more power and water is required to keep them cool.

“I’m just surprised that the state isn’t tracking this, with so much attention on power and water use here in California,” said Shaolei Ren, associate professor of electrical and computer engineering at UC Riverside.

Ren and his colleagues calculated that the global use of AI could require as much fresh water in 2027 as that now used by four to six countries the size of Denmark.

Driving the data center construction is money. Today’s stock market rewards companies that say they are investing in AI. Electric utilities profit as power use rises. And local governments benefit from the property taxes paid by data centers.

Transmission lines are reflected on the side of a building.

Transmission lines are reflected on the side of the NTT data center in Santa Clara.

(Paul Kuroda / For The Times)

Silicon Valley is the world’s epicenter of AI, with some of the biggest developers headquartered there, including Alphabet, Apple and Meta. OpenAI, the creator of ChatGPT, is based in San Francisco. Nvidia, the maker of chips needed for AI, operates from Santa Clara.

The big tech companies leading in AI, which also include Microsoft and Amazon, are spending billions to build new data centers around the world. They are also paying to rent space for their servers in so-called co-location data centers built by other companies.

In a Chicago suburb, a developer recently bought 55 homes so they could be razed to build a sprawling data center campus.

Energy officials in northern Virginia, which has more data centers than any other region in the world, have proposed a transmission line to shore up the grid that would depend on coal plants that had been expected to be shuttered.

In Oregon, Google and the city of The Dalles fought for 13 months to prevent the Oregonian from getting records of how much water the company’s data centers were consuming. The newspaper won the court case, learning the facilities drank up 29% of the city’s water.

By 2030, data centers could account for as much as 11% of U.S. power demand — up from 3% now, according to analysts at Goldman Sachs.

“We must demand more efficient data centers or else their continued growth will place an unsustainable strain on energy resources, impact new home building, and increase both carbon emissions and California residents’ cost of electricity,” wrote Charles Giancarlo, chief executive of the Santa Clara IT firm Pure Storage.

Santa Clara a top market for data centers

Boys ride their bikes on Main Street near a large data center in Santa Clara.

(Paul Kuroda / For The Times)

California has more than 270 data centers, with the biggest concentration in Santa Clara. The city is an attractive location because its electric rates are 40% lower than those charged by PG&E.

But the lower rates come with a higher cost to the climate. The city’s utility, Silicon Valley Power, emits more greenhouse gas than the average California electric utility because 23% of its power for commercial customers comes from gas-fired plants. Another 35% is purchased on the open market where the electricity’s origin can’t be traced.

The utility also gives data centers and other big industrial customers a discount on electric rates.

While Santa Clara households pay more for each kilowatt hour beyond a certain threshold, the rate for data centers declines as they use more power.

The city receives millions of dollars of property taxes from the data centers. And 5% of the utility’s revenue goes to the city’s general fund, where it pays for services such as road maintenance and police.

An analysis last year by the Silicon Valley Voice newspaper questioned the lower rates data centers pay compared with residents.

“What impetus do Santa Clarans have to foot the bill for these environmentally unfriendly behemoth buildings?” wrote managing editor Erika Towne.

In October, Manuel Pineda, the utility’s top official, told the City Council that his team was working to double power delivery over the next 10 years. “We prioritize growth as a strategic opportunity,” he said.

He said usage by data centers was continuing to escalate, but the utility was nearing its power limit. He said 13 new data centers were under construction and 12 more were moving forward with plans.

“We cannot currently serve all data centers that would like to be in Santa Clara,” he said.

A data center rises many stories into the sky.

Dozens of data centers have been built for artificial intelligence and the internet in Santa Clara.

(Paul Kuroda / For The Times)

To accommodate increasing power use, the city is now spending heavily on transmission lines, substations and other infrastructure. At the same time, electric rates are rising. Rates had been increasing by 2% to 3% a year, but they jumped by 8% in January 2023, another 5% in July 2023 and 10% last January.

Pineda told The Times that it wasn’t just the new infrastructure that pushed rates up. The biggest factor, he said, was a spike in natural gas prices in 2022, which increased power costs.

He said residential customers pay higher rates because the distribution system to homes requires more poles, wires and transformers than the system serving data centers, which increases maintenance costs.

Pineda said the city’s decisions to approve new data centers “are generally based on land use factors, not on revenue generation.”

Loretta Lynch, former chair of the state’s public utilities commission, noted that big commercial customers such as data centers pay lower rates for electricity across the state. That means when transmission lines and other infrastructure must be built to handle the increasing power needs, residential customers pick up more of the bill.

“Why aren’t data centers paying their fair share for infrastructure? That’s my question,” she said.

PG&E eyes profits from boom

The grid’s limited capacity has not stopped PG&E from wooing companies that want to build data centers.

“I think we will definitely be one of the big ancillary winners of the demand growth for data centers,” Patricia Poppe, PG&E’s chief executive, told Wall Street analysts on an April conference call.

Poppe said she recently invited the company’s tech customers to an event at a San José substation.

“When I got there, I was pleasantly surprised to see AWS, Microsoft, Apple, Google, Equinix, Cisco, Western Digital Semiconductors, Tesla, all in attendance. These are our customers that we serve who want us to serve more,” she said on the call. “They were very clear: they would build … if we can provide.”

In June, PG&E revealed it had received 26 applications for new data centers, including three that need at least 500 megawatts of power, 24 hours a day. In all, the proposed data centers would use 3.5 gigawatts. That amount of power could support nearly 5 million homes, based on the average usage of a California household of 6,174 kilowatts a year.

In the June presentation, PG&E said the new data centers would require it to spend billions of dollars on new infrastructure.

Already PG&E can’t keep up with connecting customers to the grid. It has fallen so far behind on connecting new housing developments that last year legislators passed a law to try to shorten the delays. At that time, the company told Politico that the delays stemmed from rising electricity demand, including from data centers.

In a statement to The Times, PG&E said its system was “ready for data centers.”

The company said its analysis showed that adding the data centers would not increase bills for other customers.

Most of the year, excluding extreme hot weather, its grid “is only 45% utilized on average,” the company said.

“Data centers’ baseload will enable us to utilize more of this percentage and deliver more per customer dollar,” the company said. “For every 1,000 MW load from data centers we anticipate our customers could expect 1-2% saving on their monthly electricity bill.”

The company added that it was “developing tools to ensure that every customer can cost-effectively connect new loads to the system with minimal delay.”

Lynch questioned the company’s analysis that adding data centers could reduce bills for other customers. She pointed out that utilities earn profits by investing in new infrastructure. That’s because they get to recover that cost — plus an annual rate of return — through rates billed to all customers.

“The more they spend, the more they make,” she said.

In the desert, cheap land and green energy

Dusk settles over the low Salton Sea.

A geothermal plant viewed from across the Salton Sea in December 2022.

(Gina Ferazzi / Los Angeles Times)

The power and land constraints in Santa Clara and other cities have data center developers looking for new frontiers.

“On the edge of the Southern California desert in Imperial County sits an abundance of land,” begins the sales brochure for the data center that a company called CalEthos is building near the south shore of the Salton Sea.

Electricity for the data center’s servers would come from the geothermal and solar plants built near the site in an area that has become known as Lithium Valley.

The company is negotiating to purchase as much as 500 megawatts of power, the brochure said.

Water for the project would come from the state’s much fought over allotment from the Colorado River.

Imperial County is one of California’s poorest counties. More than 80% of its population are Latino. Many residents are farmworkers.

Executives from Tustin-based CalEthos told The Times that by using power from the nearby geothermal plants it would help the local community.

“By creating demand for local energy, CalEthos will help accelerate the development of Lithium Valley and its associated economic benefits,” Joel Stone, the company’s president, wrote in an email.

“We recognize the importance of responsible energy and water use in California,” Stone said. “Our data centers will be designed to be as efficient as possible.”

For example, Stone said that in order to minimize water use, CalEthos plans a cooling system where water is recirculated and “requires minimal replenishment due to evaporation.”

Already, a local community group, Comite Civico del Valle, has raised concerns about the environmental and health risks of one of the nearby geothermal plants that plans to produce lithium from the brine brought up in the energy production process.

One of the group’s concerns about the geothermal plant is that its water use will leave less to replenish the Salton Sea. The lake has been decreasing in size, creating a larger dry shoreline that is laden with bacteria and chemicals left from decades of agricultural runoff. Scientists have tied the high rate of childhood asthma in the area to dust from the shrinking lake’s shores.

James Blair, associate professor of geography and anthropology at Cal Poly Pomona, questioned whether the area was the right place for a mammoth data center.

“Data centers drain massive volumes of energy and water for chillers and cooling towers to prevent servers from overheating,” he said.

Blair said that while the company can tell customers its data center is supported by environmentally friendly solar and geothermal power, it will take that renewable energy away from the rest of California’s grid, making it harder for the state to meet its climate goals.

Newsletter

Toward a more sustainable California

Get Boiling Point, our newsletter exploring climate change, energy and the environment, and become part of the conversation — and the solution.

You may occasionally receive promotional content from the Los Angeles Times.

Read the full story here.
Photos courtesy of

Lasers could help cut CO2 emissions from Maine’s paper and pulp mills

This story was first published by Energy News Network . A Massachusetts university is developing technology that aims to use lasers to drastically cut emissions and energy use from Maine’s paper and pulp industry. Worcester Polytechnic Institute recently received a $2.75 million U.S. Department of Energy grant…

This story was first published by Energy News Network. A Massachusetts university is developing technology that aims to use lasers to drastically cut emissions and energy use from Maine’s paper and pulp industry. Worcester Polytechnic Institute recently received a $2.75 million U.S. Department of Energy grant to help ready the industrial drying technology for commercial use. “We are all excited about this — this is potentially a groundbreaking technology,” said Jamal Yagoobi, founding director of the institute’s Center for Advanced Research in Drying. In Maine, the paper and pulp business generates about 1 million metric tons of carbon dioxide emissions each year, roughly half of the state’s industrial emissions. Much of these emissions result from the process of drying mashed, pressed, and rolled wood pulp to yield paper products. The emissions come mainly from three major operations across the state; three additional facilities contribute smaller amounts. These plants’ emissions will need to be addressed if Maine is to reach its goal of going carbon neutral by 2045. Furthermore, each of these plants is located in an area with an above-average population of low-income residents, according to data assembled by Industrious Labs, an environmental organization focused on the impact of industry. And two are located in areas with a higher-than-average risk of cancer from air toxins, suggesting a correlation between their operations and the incidence of cancer in the area. At the same, the paper and pulp industry remains economically important to Maine, said Matt Cannon, state conservation and energy director for the Maine chapter of the Sierra Club. “It’s got real union jobs — the paper industry is still very important to our community,” he said. Worcester Polytechnic’s drying research center has been working on ways to dry paper, pulp, and other materials using the concentrated energy found in lasers. The lasers Yagoobi’s team is using are not the lasers of the public imagination, like a red beam zapping at alien enemies. Though the lasers are quite strong — they can melt metal, Yagoobi says — they are dispersed over a larger area, spreading out the energy to evenly and gently dry the target material.

The economic case for green steel production at a Michigan steel mill

Dearborn, Michigan, was at the heart of auto industry innovation during the days of the Model T Ford. Now clean energy and environmental justice advocates are proposing that the city play a lead role in greening the auto industry, through a transformation of the Dearborn Works steel mill to “green steel” — a…

Dearborn, Michigan, was at the heart of auto industry innovation during the days of the Model T Ford. Now clean energy and environmental justice advocates are proposing that the city play a lead role in greening the auto industry, through a transformation of the Dearborn Works steel mill to ​“green steel” — a steelmaking process powered by hydrogen and renewable energy with drastically lower emissions than a traditional blast furnace. The blast furnace at Dearborn Works is due for relining in 2027, at an estimated cost of $470 million. Advocates argue that instead of prolonging the blast furnace’s life, its owner, Cleveland Cliffs, should invest another $2 billion dollars and convert the mill to Direct Reduced Iron (DRI) technology powered by green hydrogen (hydrogen produced with renewable energy). An October report by Dr. Elizabeth Boatman of the firm 5 Lakes Energy examines the economics and logistics of such a conversion, and argues that demand for cleaner steel is likely to grow as auto companies and other global industries seek to lower their greenhouse gas footprints. Starting in 2026, steel importers to the European Union will need to make payments to offset emissions associated with steel production. Worldwide, the auto industry is the second largest consumer of steel after construction, and ​“being able to pass on the price of a ​‘green steel premium’ to its end consumers, the automotive industry is uniquely positioned to create demand for green steel without having to rely on public subsidies,” the European Union think tank CEPS said in a recent publication. “This is a great chance for the state to step in now and ensure this conversion happens, instead of waiting another 20 years,” said Boatman. ​“All the economic indicators suggest clean steel is the steel product of the future, and the best way to future-proof jobs especially in the steel sector and especially for unions.” Cutting pollution, creating jobs  Cleveland Cliffs is planning to convert its Middletown, Ohio, steel mill to DRI, tapping a $500 million federal grant for industrial decarbonization under the Bipartisan Infrastructure Law and Inflation Reduction Act. A DRI furnace does not need to use coke or heat iron ore to 3,000 degrees Fahrenheit to produce pure ​“pig iron”; the same result is achieved with a different chemical process at much lower temperatures. DRI furnaces can be powered by natural gas or clean hydrogen. Initially, Cleveland Cliffs says, its Middletown mill will run on natural gas, releasing about half the carbon emissions of its current blast furnace. Eventually, the company announced, it could switch to hydrogen. Along with slashing greenhouse gas emissions, a similar green steel conversion at Dearborn Works would greatly reduce the local air pollution burden facing residents in the heavily industrial area, which is also home to a Marathon oil refinery, a major rail yard, and other polluters. But it wouldn’t be cheap. Boatman’s report estimated the cost of converting a blast furnace to a DRI furnace and associated electric arc furnaces at $1.57 billion, plus $2.6 billion to build a green hydrogen plant. Utility DTE Energy would need to work with grid operator MISO to add about 2 GW of solar and 2 GW of wind power, plus battery storage, to the grid to power the green hydrogen production. The conversion would mean closure of the EES Coke plant, which turns coal into coke for the steel mill, on heavily polluted Zug Island in the River Rouge just outside Detroit, five miles from Dearborn. In 2022, the EPA sued the coke plant, a subsidiary of DTE Energy, over Clean Air Act violations. A recent study by the nonprofit Industrious Labs found that the EES Coke plant could be responsible for up to 57 premature deaths and more than 15,000 asthma attacks. The report also found that more than half the people living within a three-mile radius of both the steel mill and coke plant are low-income, and three-quarters of those living around the coke plant are people of color, as are half those living around the steel mill. “The total health costs are quite significant,” said Nick Leonard, executive director of the Great Lakes Environmental Law Center, which is representing local residents as intervenors in the EPA lawsuit against the coke plant. ​“We allow companies to externalize those costs and not account for them. If they were required by some sort of change in policy or regulation to be responsible for those costs, it would certainly make the case they could make this expensive switch” to green steel. The law center also represented residents in legal proceedings around Dearborn Works’ Clean Air Act violations, including a 2015 consent decree and a 2023 mandate to install a new electrostatic precipitator at a cost of $100 million. Leonard said local residents ​“know Cleveland Cliffs poses a risk to their health, and they want solutions. They know there’s a problem — they are frustrated by the lack of will or attention from state and local government.” Cleveland Cliffs did not respond to a request for comment. Why Michigan? The country’s active steel mills are concentrated in Pennsylvania, Indiana, Ohio, and Michigan. Advocates and residents are asking Nippon Steel to consider a green steel conversion at the Gary Works mill in Northwest Indiana, if the global corporation succeeds in acquiring Gary Works owner U.S. Steel. Advocates have also proposed green steel conversions for Pennsylvania mills.

Ensuring a durable transition

Progress on the energy transition depends on collective action benefiting all stakeholders, agreed participants in MITEI’s annual research conference.

To fend off the worst impacts of climate change, “we have to decarbonize, and do it even faster,” said William H. Green, director of the MIT Energy Initiative (MITEI) and Hoyt C. Hottel Professor, MIT Department of Chemical Engineering, at MITEI’s Annual Research Conference.“But how the heck do we actually achieve this goal when the United States is in the middle of a divisive election campaign, and globally, we’re facing all kinds of geopolitical conflicts, trade protectionism, weather disasters, increasing demand from developing countries building a middle class, and data centers in countries like the U.S.?”Researchers, government officials, and business leaders convened in Cambridge, Massachusetts, Sept. 25-26 to wrestle with this vexing question at the conference that was themed, “A durable energy transition: How to stay on track in the face of increasing demand and unpredictable obstacles.”“In this room we have a lot of power,” said Green, “if we work together, convey to all of society what we see as real pathways and policies to solve problems, and take collective action.”The critical role of consensus-building in driving the energy transition arose repeatedly in conference sessions, whether the topic involved developing and adopting new technologies, constructing and siting infrastructure, drafting and passing vital energy policies, or attracting and retaining a skilled workforce.Resolving conflictsThere is “blowback and a social cost” in transitioning away from fossil fuels, said Stephen Ansolabehere, the Frank G. Thompson Professor of Government at Harvard University, in a panel on the social barriers to decarbonization. “Companies need to engage differently and recognize the rights of communities,” he said.Nora DeDontney, director of development at Vineyard Offshore, described her company’s two years of outreach and negotiations to bring large cables from ocean-based wind turbines onshore.“Our motto is, 'community first,'” she said. Her company works to mitigate any impacts towns might feel because of offshore wind infrastructure construction with projects, such as sewer upgrades; provides workforce training to Tribal Nations; and lays out wind turbines in a manner that provides safe and reliable areas for local fisheries.Elsa A. Olivetti, professor in the Department of Materials Science and Engineering at MIT and the lead of the Decarbonization Mission of MIT’s new Climate Project, discussed the urgent need for rapid scale-up of mineral extraction. “Estimates indicate that to electrify the vehicle fleet by 2050, about six new large copper mines need to come on line each year,” she said. To meet the demand for metals in the United States means pushing into Indigenous lands and environmentally sensitive habitats. “The timeline of permitting is not aligned with the temporal acceleration needed,” she said.Larry Susskind, the Ford Professor of Urban and Environmental Planning in the MIT Department of Urban Studies and Planning, is trying to resolve such tensions with universities playing the role of mediators. He is creating renewable energy clinics where students train to participate in emerging disputes over siting. “Talk to people before decisions are made, conduct joint fact finding, so that facilities reduce harms and share the benefits,” he said.Clean energy boom and pressureA relatively recent and unforeseen increase in demand for energy comes from data centers, which are being built by large technology companies for new offerings, such as artificial intelligence.“General energy demand was flat for 20 years — and now, boom,” said Sean James, Microsoft’s senior director of data center research. “It caught utilities flatfooted.” With the expansion of AI, the rush to provision data centers with upwards of 35 gigawatts of new (and mainly renewable) power in the near future, intensifies pressure on big companies to balance the concerns of stakeholders across multiple domains. Google is pursuing 24/7 carbon-free energy by 2030, said Devon Swezey, the company’s senior manager for global energy and climate.“We’re pursuing this by purchasing more and different types of clean energy locally, and accelerating technological innovation such as next-generation geothermal projects,” he said. Pedro Gómez Lopez, strategy and development director, Ferrovial Digital, which designs and constructs data centers, incorporates renewable energy into their projects, which contributes to decarbonization goals and benefits to locales where they are sited. “We can create a new supply of power, taking the heat generated by a data center to residences or industries in neighborhoods through District Heating initiatives,” he said.The Inflation Reduction Act and other legislation has ramped up employment opportunities in clean energy nationwide, touching every region, including those most tied to fossil fuels. “At the start of 2024 there were about 3.5 million clean energy jobs, with 'red' states showing the fastest growth in clean energy jobs,” said David S. Miller, managing partner at Clean Energy Ventures. “The majority (58 percent) of new jobs in energy are now in clean energy — that transition has happened. And one-in-16 new jobs nationwide were in clean energy, with clean energy jobs growing more than three times faster than job growth economy-wide”In this rapid expansion, the U.S. Department of Energy (DoE) is prioritizing economically marginalized places, according to Zoe Lipman, lead for good jobs and labor standards in the Office of Energy Jobs at the DoE. “The community benefit process is integrated into our funding,” she said. “We are creating the foundation of a virtuous circle,” encouraging benefits to flow to disadvantaged and energy communities, spurring workforce training partnerships, and promoting well-paid union jobs. “These policies incentivize proactive community and labor engagement, and deliver community benefits, both of which are key to building support for technological change.”Hydrogen opportunity and challengeWhile engagement with stakeholders helps clear the path for implementation of technology and the spread of infrastructure, there remain enormous policy, scientific, and engineering challenges to solve, said multiple conference participants. In a “fireside chat,” Prasanna V. Joshi, vice president of low-carbon-solutions technology at ExxonMobil, and Ernest J. Moniz, professor of physics and special advisor to the president at MIT, discussed efforts to replace natural gas and coal with zero-carbon hydrogen in order to reduce greenhouse gas emissions in such major industries as steel and fertilizer manufacturing.“We have gone into an era of industrial policy,” said Moniz, citing a new DoE program offering incentives to generate demand for hydrogen — more costly than conventional fossil fuels — in end-use applications. “We are going to have to transition from our current approach, which I would call carrots-and-twigs, to ultimately, carrots-and-sticks,” Moniz warned, in order to create “a self-sustaining, major, scalable, affordable hydrogen economy.”To achieve net zero emissions by 2050, ExxonMobil intends to use carbon capture and sequestration in natural gas-based hydrogen and ammonia production. Ammonia can also serve as a zero-carbon fuel. Industry is exploring burning ammonia directly in coal-fired power plants to extend the hydrogen value chain. But there are challenges. “How do you burn 100 percent ammonia?”, asked Joshi. “That's one of the key technology breakthroughs that's needed.” Joshi believes that collaboration with MIT’s “ecosystem of breakthrough innovation” will be essential to breaking logjams around the hydrogen and ammonia-based industries.MIT ingenuity essentialThe energy transition is placing very different demands on different regions around the world. Take India, where today per capita power consumption is one of the lowest. But Indians “are an aspirational people … and with increasing urbanization and industrial activity, the growth in power demand is expected to triple by 2050,” said Praveer Sinha, CEO and managing director of the Tata Power Co. Ltd., in his keynote speech. For that nation, which currently relies on coal, the move to clean energy means bringing another 300 gigawatts of zero-carbon capacity online in the next five years. Sinha sees this power coming from wind, solar, and hydro, supplemented by nuclear energy.“India plans to triple nuclear power generation capacity by 2032, and is focusing on advancing small modular reactors,” said Sinha. “The country also needs the rapid deployment of storage solutions to firm up the intermittent power.” The goal is to provide reliable electricity 24/7 to a population living both in large cities and in geographically remote villages, with the help of long-range transmission lines and local microgrids. “India’s energy transition will require innovative and affordable technology solutions, and there is no better place to go than MIT, where you have the best brains, startups, and technology,” he said.These assets were on full display at the conference. Among them a cluster of young businesses, including:the MIT spinout Form Energy, which has developed a 100-hour iron battery as a backstop to renewable energy sources in case of multi-day interruptions;startup Noya that aims for direct air capture of atmospheric CO2 using carbon-based materials;the firm Active Surfaces, with a lightweight material for putting solar photovoltaics in previously inaccessible places;Copernic Catalysts, with new chemistry for making ammonia and sustainable aviation fuel far more inexpensively than current processes; andSesame Sustainability, a software platform spun out of MITEI that gives industries a full financial analysis of the costs and benefits of decarbonization.The pipeline of research talent extended into the undergraduate ranks, with a conference “slam” competition showcasing students’ summer research projects in areas from carbon capture using enzymes to 3D design for the coils used in fusion energy confinement.“MIT students like me are looking to be the next generation of energy leaders, looking for careers where we can apply our engineering skills to tackle exciting climate problems and make a tangible impact,” said Trent Lee, a junior in mechanical engineering researching improvements in lithium-ion energy storage. “We are stoked by the energy transition, because it’s not just the future, but our chance to build it.”

Massachusetts passes bill to speed clean energy and slow gas expansion

Yesterday, Massachusetts lawmakers made major moves to reduce greenhouse gas emissions and transition the state to clean energy. Legislators approved a long-awaited climate bill that will limit gas pipeline expansion, make it easier to site and build renewables, and allow utilities to use geothermal energy — instead…

Yesterday, Massachusetts lawmakers made major moves to reduce greenhouse gas emissions and transition the state to clean energy. Legislators approved a long-awaited climate bill that will limit gas pipeline expansion, make it easier to site and build renewables, and allow utilities to use geothermal energy — instead of fossil fuels — to heat and cool homes. Governor Maura Healey, a Democrat, is expected to sign it into law in the coming days. The bill first passed the Senate over the summer but stalled in the House, where representatives wanted a more narrow focus that didn’t include gas system reforms. The legislators managed to reach a compromise, and environmental advocates are pleased with the result. “The Legislature and the Healey-Driscoll Administration are taking tangible steps to drive the Commonwealth’s clean energy future forward in the wake of the federal Election outcome,” the Acadia Center said in a press release following the vote. Massachusetts is the first state to take action on climate since Trump’s re-election; the new federal landscape could spur more state lawmakers to try and advance climate legislation. A large portion of the new bill streamlines the steps for clean energy projects to get off the ground. Instead of having to go through multiple agencies for approval, the Energy Facilities Siting Board will oversee the entire process. ​“We’re eliminating a lot of the friction that prevents projects from being built,” said Caitlin Peale Sloan, vice president of the Massachusetts chapter at Conservation Law Foundation. “This will hopefully unlock the clean energy that we need to get built,” Sloan said. Massachusetts has committed to reaching net-zero emissions by 2050 and cutting emissions 50 percent below 1990 levels by 2030. A faster permitting process could leave less room for opposition from impacted communities. On top of that, the bill places a time limit on challenges to renewable energy projects — which can sometimes hold up construction for years — to 15 months. But to protect already burdened communities, the legislature added a requirement that each project proposal must look at cumulative environmental impact, or how a new facility could add to the existing pollution in a given area. The bill also sets state targets for long duration energy storage and allows contracts for offshore wind and battery storage for up to 30 years, instead of the current 20. One provision allows Massachusetts to receive nuclear energy from neighboring Connecticut; in exchange, Connecticut is expected to agree to take wind power from MA’s 1,200 megawatt Vineyard Wind 2 project. In terms of gas reform, the new law takes an important step by changing how gas companies are defined. Until now, gas utilities in Massachusetts have only been allowed to deliver gas to their customers, and no alternative fuels. Going forward, they can provide heating and cooling to homes through networked geothermal energy, which connects water-filled pipes in the street to heat pumps in buildings. Several utilities are already operating small-scale demonstration projects of this technology in the state. In June, Eversource Gas brought the first networked geothermal pilot online, delivering energy to 36 buildings in Framingham, MA.

3 Questions: Can we secure a sustainable supply of nickel?

Extraction of nickel, an essential component of clean energy technologies, needs stronger policies to protect local environments and communities, MIT researchers say.

As the world strives to cut back on carbon emissions, demand for minerals and metals needed for clean energy technologies is growing rapidly, sometimes straining existing supply chains and harming local environments. In a new study published today in Joule, Elsa Olivetti, a professor of materials science and engineering and director of the Decarbonizing Energy and Industry mission within MIT’s Climate Project, along with recent graduates Basuhi Ravi PhD ’23 and Karan Bhuwalka PhD ’24 and nine others, examine the case of nickel, which is an essential element for some electric vehicle batteries and parts of some solar panels and wind turbines.How robust is the supply of this vital metal, and what are the implications of its extraction for the local environments, economies, and communities in the places where it is mined? MIT News asked Olivetti, Ravi, and Bhuwalka to explain their findings.Q: Why is nickel becoming more important in the clean energy economy, and what are some of the potential issues in its supply chain?Olivetti: Nickel is increasingly important for its role in EV batteries, as well as other technologies such as wind and solar. For batteries, high-purity nickel sulfate is a key input to the cathodes of EV batteries, which enables high energy density in batteries and increased driving range for EVs. As the world transitions away from fossil fuels, the demand for EVs, and consequently for nickel, has increased dramatically and is projected to continue to do so.The nickel supply chain for battery-grade nickel sulfate includes mining nickel from ore deposits, processing it to a suitable nickel intermediary, and refining it to nickel sulfate. The potential issues in the supply chain can be broadly described as land use concerns in the mining stage, and emissions concerns in the processing stage. This is obviously oversimplified, but as a basic structure for our inquiry we thought about it this way. Nickel mining is land-intensive, leading to deforestation, displacement of communities, and potential contamination of soil and water resources from mining waste. In the processing step, the use of fossil fuels leads to direct emissions including particulate matter and sulfur oxides. In addition, some emerging processing pathways are particularly energy-intensive, which can double the carbon footprint of nickel-rich batteries compared to the current average.Q: What is Indonesia’s role in the global nickel supply, and what are the consequences of nickel extraction there and in other major supply countries?Ravi: Indonesia plays a critical role in nickel supply, holding the world's largest nickel reserves and supplying nearly half of the globally mined nickel in 2023. The country's nickel production has seen a remarkable tenfold increase since 2016. This production surge has fueled economic growth in some regions, but also brought notable environmental and social impacts to nickel mining and processing areas.Nickel mining expansion in Indonesia has been linked to health impacts due to air pollution in the islands where nickel processing is prominent, as well as deforestation in some of the most biodiversity-rich locations on the planet. Reports of displacement of indigenous communities, land grabbing, water rights issues, and inadequate job quality in and around mines further highlight the social concerns and unequal distribution of burdens and benefits in Indonesia. Similar concerns exist in other major nickel-producing countries, where mining activities can negatively impact the environment, disrupt livelihoods, and exacerbate inequalities.On a global scale, Indonesia’s reliance on coal-based energy for nickel processing, particularly in energy-intensive smelting and leaching of a clay-like material called laterite, results in a high carbon intensity for nickel produced in the region, compared to other major producing regions such as Australia.Q: What role can industry and policymakers play in helping to meet growing demand while improving environmental safety?Bhuwalka: In consuming countries, policies can foster “discerning demand,” which means creating incentives for companies to source nickel from producers that prioritize sustainability. This can be achieved through regulations that establish acceptable environmental footprints for imported materials, such as limits on carbon emissions from nickel production. For example, the EU’s Critical Raw Materials Act and the U.S. Inflation Reduction Act could be leveraged to promote responsible sourcing. Additionally, governments can use their purchasing power to favor sustainably produced nickel in public procurement, which could influence industry practices and encourage the adoption of sustainability standards.On the supply side, nickel-producing countries like Indonesia can implement policies to mitigate the adverse environmental and social impacts of nickel extraction. This includes strengthening environmental regulations and enforcement to reduce the footprint of mining and processing, potentially through stricter pollution limits and responsible mine waste management. In addition, supporting community engagement, implementing benefit-sharing mechanisms, and investing in cleaner nickel processing technologies are also crucial.Internationally, harmonizing sustainability standards and facilitating capacity building and technology transfer between developed and developing countries can create a level playing field and prevent unsustainable practices. Responsible investment practices by international financial institutions, favoring projects that meet high environmental and social standards, can also contribute to a stable and sustainable nickel supply chain.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.