Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Astonishing Nuclear Breakthrough Could Rewrite the Fundamental Constants of Nature

News Feed
Sunday, August 4, 2024

UCLA physicists have developed a nuclear clock using thorium atoms, potentially the most accurate clock ever, which could redefine fundamental constants and advance precision in technology and science. Credit: SciTechDaily.comThe findings may lead to the creation of the most precise clock ever, facilitating advancements in deep space navigation and communication.Using a laser to raise the energy state of an atom’s nucleus, known as excitation, can lead to the development of the most precise atomic clocks. This process has been challenging because the electrons surrounding the nucleus are highly reactive to light, necessitating more light to affect the nucleus. UCLA physicists have overcome this by bonding the electrons with fluorine in a transparent crystal, allowing them to excite the neutrons in a thorium atom’s nucleus using a moderate amount of laser light. This achievement paves the way for significantly more accurate measurements of time, gravity, and other fields, far surpassing the current accuracy levels provided by atomic electrons.For almost half a century, physicists have envisioned the possibilities that could arise from elevating the energy state of an atom’s nucleus with a laser. This breakthrough would enable the replacement of current atomic clocks with a nuclear clock, the most accurate timekeeping device ever conceived. Such precision would revolutionize fields like deep space navigation and communication.It would also allow scientists to measure precisely whether the fundamental constants of nature are, in fact, really constant or merely appear to be because we have not yet measured them precisely enough. Now, an effort led by Eric Hudson, professor of physics and astronomy at UCLA, has accomplished the seemingly impossible. By embedding a thorium atom within a highly transparent crystal and bombarding it with lasers, Hudson’s group has succeeded in getting the nucleus of the thorium atom to absorb and emit photons like electrons in an atom do. The astonishing feat is described in a paper published in the journal Physical Review Letters.Enhanced Measurement CapabilitiesThis means that measurements of time, gravity, and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy. The reason is that atomic electrons are influenced by many factors in their environment, which affects how they absorb and emit photons and limits their accuracy. Neutrons and protons, on the other hand, are bound and highly concentrated within the nucleus and experience less environmental disturbance.Using the new technology, scientists may be able to determine if fundamental constants, such as the fine-structure constant which sets the strength of the force that holds atoms together, vary. Hints from astronomy suggest that the fine-structure constant might not be the same everywhere in the universe or at all points in time. Precise measurement using the nuclear clock of the fine-structure constant could completely rewrite some of these most basic laws of nature.“Nuclear forces are so strong it means the energy in the nucleus is a million times stronger than what you see in the electrons, which means that if the fundamental constants of nature deviate, the resulting changes in the nucleus are much bigger and more noticeable, making measurements orders of magnitude more sensitive,” Hudson said. “Using a nuclear clock for these measurements will provide the most sensitive test of ‘constant variation’ to date and it is likely no experiment for the next 100 years will rival it.”Hudson’s group was the first to propose a series of experiments to stimulate thorium-229 nuclei doped into crystals with a laser, and has spent the past 15 years working to achieve the newly published results. Getting neutrons in the atomic nucleus to react to laser light is challenging because they are surrounded by electrons, which react readily to light and can reduce the number of photons actually able to reach the nucleus. A particle that has raised its energy level, such as through the absorption of a photon, is said to be in an “excited” state.Challenges and Innovations in Nuclear PhysicsThe UCLA team embedded thorium-229 atoms within a transparent crystal rich in fluorine. Fluorine can form especially strong bonds with other atoms, suspending the atoms and exposing the nucleus like a fly in a spider web. The electrons were so tightly bound with the fluorine that the amount of energy it would take to excite them was very high, allowing lower energy light to reach the nucleus. The thorium nuclei could then absorb these photons and re-emit them, allowing the excitation of the nuclei to be detected and measured. By changing the energy of the photons and monitoring the rate at which the nuclei are excited, the team was able to measure the energy of the nuclear excited state.“We have never been able to drive nuclear transitions like this with a laser before,” Hudson said. “If you hold the thorium in place with a transparent crystal, you can talk to it with light.”Hudson said the new technology could find uses wherever extreme precision in timekeeping is required in sensing, communications, and navigation. Existing atomic clocks based on electrons are room-sized contraptions with vacuum chambers to trap atoms and equipment associated with cooling. A thorium-based nuclear clock would be much smaller, more robust, more portable, and more accurate.“Nobody gets excited about clocks because we don’t like the idea of time being limited,” he said. “But we use atomic clocks all the time every day, for example, in the technologies that make our cell phones and GPS work.”Above and beyond commercial applications, the new nuclear spectroscopy could pull back the curtains on some of the universe’s biggest mysteries. Sensitive measurement of an atom’s nucleus opens up a new way to learn about its properties and interactions with energy and the environment. This, in turn, will let scientists test some of their most fundamental ideas about matter, energy, and the laws of space and time.“Humans, like most life on Earth, exist at scales either far too small or far too large to observe what might really be going on in the universe,” Hudson said. “What we can observe from our limited perspective is a conglomeration of effects at different scales of size, time and energy, and the constants of nature we’ve formulated seem to hold at this level.“But if we could observe more precisely, these constants might actually vary! Our work has taken a big step toward these measurements and, either way, I am sure we will be surprised at what we learn.”“For many decades, increasingly precise measurements of fundamental constants have allowed us to better understand the universe at all scales and subsequently develop new technologies that grow our economy and strengthen our national security,” said Denise Caldwell, acting assistant director of NSF’s Mathematical and Physical Sciences Directorate, which provided funding for the research. “This nucleus-based technique could one day allow scientists to measure some fundamental constants so precisely that we might have to stop calling them ‘constant.’”Reference: “Laser Excitation of the Th229 Nuclear Isomeric Transition in a Solid-State Host” by R. Elwell, Christian Schneider, Justin Jeet, J. E. S. Terhune, H. W. T. Morgan, A. N. Alexandrova, H. B. Tran Tan, Andrei Derevianko and Eric R. Hudson, 2 July 2024, Physical Review Letters.DOI: 10.1103/PhysRevLett.133.013201The research was funded by the U.S. National Science Foundation.

The findings may lead to the creation of the most precise clock ever, facilitating advancements in deep space navigation and communication. Using a laser to...

Nuclear Fusion Reaction Concept Illustration

UCLA physicists have developed a nuclear clock using thorium atoms, potentially the most accurate clock ever, which could redefine fundamental constants and advance precision in technology and science. Credit: SciTechDaily.com

The findings may lead to the creation of the most precise clock ever, facilitating advancements in deep space navigation and communication.

Using a laser to raise the energy state of an atom’s nucleus, known as excitation, can lead to the development of the most precise atomic clocks. This process has been challenging because the electrons surrounding the nucleus are highly reactive to light, necessitating more light to affect the nucleus. UCLA physicists have overcome this by bonding the electrons with fluorine in a transparent crystal, allowing them to excite the neutrons in a thorium atom’s nucleus using a moderate amount of laser light. This achievement paves the way for significantly more accurate measurements of time, gravity, and other fields, far surpassing the current accuracy levels provided by atomic electrons.

For almost half a century, physicists have envisioned the possibilities that could arise from elevating the energy state of an atom’s nucleus with a laser. This breakthrough would enable the replacement of current atomic clocks with a nuclear clock, the most accurate timekeeping device ever conceived. Such precision would revolutionize fields like deep space navigation and communication.

It would also allow scientists to measure precisely whether the fundamental constants of nature are, in fact, really constant or merely appear to be because we have not yet measured them precisely enough.

Now, an effort led by Eric Hudson, professor of physics and astronomy at UCLA, has accomplished the seemingly impossible. By embedding a thorium atom within a highly transparent crystal and bombarding it with lasers, Hudson’s group has succeeded in getting the nucleus of the thorium atom to absorb and emit photons like electrons in an atom do. The astonishing feat is described in a paper published in the journal Physical Review Letters.

Enhanced Measurement Capabilities

This means that measurements of time, gravity, and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy. The reason is that atomic electrons are influenced by many factors in their environment, which affects how they absorb and emit photons and limits their accuracy. Neutrons and protons, on the other hand, are bound and highly concentrated within the nucleus and experience less environmental disturbance.

Using the new technology, scientists may be able to determine if fundamental constants, such as the fine-structure constant which sets the strength of the force that holds atoms together, vary. Hints from astronomy suggest that the fine-structure constant might not be the same everywhere in the universe or at all points in time. Precise measurement using the nuclear clock of the fine-structure constant could completely rewrite some of these most basic laws of nature.

“Nuclear forces are so strong it means the energy in the nucleus is a million times stronger than what you see in the electrons, which means that if the fundamental constants of nature deviate, the resulting changes in the nucleus are much bigger and more noticeable, making measurements orders of magnitude more sensitive,” Hudson said. “Using a nuclear clock for these measurements will provide the most sensitive test of ‘constant variation’ to date and it is likely no experiment for the next 100 years will rival it.”

Hudson’s group was the first to propose a series of experiments to stimulate thorium-229 nuclei doped into crystals with a laser, and has spent the past 15 years working to achieve the newly published results. Getting neutrons in the atomic nucleus to react to laser light is challenging because they are surrounded by electrons, which react readily to light and can reduce the number of photons actually able to reach the nucleus. A particle that has raised its energy level, such as through the absorption of a photon, is said to be in an “excited” state.

Challenges and Innovations in Nuclear Physics

The UCLA team embedded thorium-229 atoms within a transparent crystal rich in fluorine. Fluorine can form especially strong bonds with other atoms, suspending the atoms and exposing the nucleus like a fly in a spider web. The electrons were so tightly bound with the fluorine that the amount of energy it would take to excite them was very high, allowing lower energy light to reach the nucleus. The thorium nuclei could then absorb these photons and re-emit them, allowing the excitation of the nuclei to be detected and measured. By changing the energy of the photons and monitoring the rate at which the nuclei are excited, the team was able to measure the energy of the nuclear excited state.

“We have never been able to drive nuclear transitions like this with a laser before,” Hudson said. “If you hold the thorium in place with a transparent crystal, you can talk to it with light.”

Hudson said the new technology could find uses wherever extreme precision in timekeeping is required in sensing, communications, and navigation. Existing atomic clocks based on electrons are room-sized contraptions with vacuum chambers to trap atoms and equipment associated with cooling. A thorium-based nuclear clock would be much smaller, more robust, more portable, and more accurate.

“Nobody gets excited about clocks because we don’t like the idea of time being limited,” he said. “But we use atomic clocks all the time every day, for example, in the technologies that make our cell phones and GPS work.”

Above and beyond commercial applications, the new nuclear spectroscopy could pull back the curtains on some of the universe’s biggest mysteries. Sensitive measurement of an atom’s nucleus opens up a new way to learn about its properties and interactions with energy and the environment. This, in turn, will let scientists test some of their most fundamental ideas about matter, energy, and the laws of space and time.

“Humans, like most life on Earth, exist at scales either far too small or far too large to observe what might really be going on in the universe,” Hudson said. “What we can observe from our limited perspective is a conglomeration of effects at different scales of size, time and energy, and the constants of nature we’ve formulated seem to hold at this level.

“But if we could observe more precisely, these constants might actually vary! Our work has taken a big step toward these measurements and, either way, I am sure we will be surprised at what we learn.”

“For many decades, increasingly precise measurements of fundamental constants have allowed us to better understand the universe at all scales and subsequently develop new technologies that grow our economy and strengthen our national security,” said Denise Caldwell, acting assistant director of NSF’s Mathematical and Physical Sciences Directorate, which provided funding for the research. “This nucleus-based technique could one day allow scientists to measure some fundamental constants so precisely that we might have to stop calling them ‘constant.’”

Reference: “Laser Excitation of the Th229 Nuclear Isomeric Transition in a Solid-State Host” by R. Elwell, Christian Schneider, Justin Jeet, J. E. S. Terhune, H. W. T. Morgan, A. N. Alexandrova, H. B. Tran Tan, Andrei Derevianko and Eric R. Hudson, 2 July 2024, Physical Review Letters.
DOI: 10.1103/PhysRevLett.133.013201

The research was funded by the U.S. National Science Foundation.

Read the full story here.
Photos courtesy of

Heart-shaped mollusc has windows that work like fibre optics

Tiny, solid windows in the shells of heart cockles let in light for the photosynthetic algae inside them – and they could show us how to make better fibre-optic cables

Heart cockles come in many colours and host photosynthetic algae inside their shellsDakota McCoy A heart-shaped mollusc has evolved tiny windows that work like fibre-optic cables, the first known example in nature. Heart cockles (Corculum cardissa) are bivalve molluscs a bit like clams that have a symbiotic relationship with photosynthetic algae that live inside them. The algae have a safe home, get light to photosynthesise and provide nutrients for their hosts. Unlike other bivalves, heart cockles don’t open their shells up wide, yet they somehow funnel light to their interior even while staying shut. Now, Dakota McCoy at the University of Chicago and her colleagues have found that there are transparent calcium carbonate crystal structures in the heart cockle shells that function like fibre-optic bundles, letting light inside to bathe the algae. “If you don’t have to open and can just have a transparent window, that’s a very safe way to irradiate your algae,” says McCoy. The researchers examined fragments of different heart cockle shells and the transparent structures within them, as well as the intensity and colour of light that gets through. They found that the windows were made from long, thin fibres of a mineral called aragonite – a form of calcium carbonate – which lets twice as much of the photosynthetically useful light through as it does harmful ultraviolet light. “We put on sunblock because UV causes mutations and cancer. The heart cockles are using these windows as a sunblock,” says McCoy. Heart cockle shells illuminated from within to show the transparent windows in their shells, which can be little triangles (left) or stripes (right)Dakota McCoy While the aragonite threads look similar to manufactured fibre optics, they lack a protective, insulating sheath, called cladding, yet transmit light just as effectively. This could serve as an inspiration for cladding-free fibre-optic cables, which would be cheaper to manufacture. The natural, UV-blocking properties of the shells could also be used to help protect corals, which, like the cockles, host photosynthetic algae inside them, but are more susceptible to environmental stresses like light and heat, says McCoy.

As Australia privatises nature repair, the cheapest approach won’t save our threatened species

Australia’s carbon credit scheme largely fails to protect threatened species, despite assumptions to the contrary. The findings provide cautionary lessons for the nature repair scheme.

ShutterstockAustralia is a world-leader in species extinction and environmental decline. So great is the problem, the federal government now wants to harness money from the private sector to pay for nature repair. Under the government’s new “nature repair market”, those who run projects to restore and protect the environment are rewarded with biodiversity credits. These credits can be sold to private buyers, such as corporations wanting to meet environmental goals. The nature repair market is similar in many ways to Ausralia’s existing carbon credit scheme. So, examining the extent to which carbon projects actually protect biodiversity is important as the government sets up the nature repair market. This was the focus of our new research. Alarmingly, we found Australia’s carbon credit scheme largely fails to protect threatened species, despite assumptions to the contrary. The findings provide cautionary lessons for the nature repair scheme. Spotlight on the carbon credit scheme Australia’s carbon credit scheme encourages activities that reduce carbon. They include planting trees, reducing animal grazing on vegetation, or retaining vegetation instead of cutting it down. Project proponents earn credits for carbon reduction, which can then be sold on a carbon market. The scheme also purports to offer “non-carbon” benefits. These include increasing biodiversity and expanding habitats for native species. Indeed, biodiversity conservation has underpinned the carbon credit scheme since it began in 2011. But does the carbon scheme actually benefit biodiversity? To answer this question, we overlaid the locations of carbon-reduction projects with the locations of habitat for threatened plants and animals species. We then scored the level of degradation of each habitat, and identified the processes imperilling the threatened species. So what did we find? Threatened species most in need of habitat restoration are the least likely to have their habitat restored under the carbon credit scheme. Projects under the scheme are primarily located in arid parts of Australia not suitable for growing crops – mostly vast cattle grazing leases. Carbon projects here involve inexpensive activities such as removing some cattle or managing weeds. These areas support habitat for only 6% of Australia’s threatened species. In other words, vegetation loss here generally doesn’t threaten species’ survival. In contrast, just 20% of carbon projects take place on productive agricultural land which supports nearly half of Australia’s threatened species. In these areas, property values are high and landholders can earn good money from farming. That means carbon-reduction projects are often less financially attractive than other land uses, so their number and size is limited. So what’s the upshot? Australia’s carbon projects are concentrated in areas containing little threatened species habitat, rather than where threatened species live and most need protecting. Government policies enable this perverse outcome, by giving preference to projects that can reduce carbon for the lowest cost. This has skewed projects towards unpopulated, relatively unproductive lands. There’s an upside It’s not all bad news, however. We found the carbon credit scheme may protect threatened species in some cases. Almost one-third (or 525) of Australia’s threatened species live in habitat that overlaps with projects under the scheme. In addition, five species whose habitat is not safeguarded in Australia’s protected areas, such as national parks, may also occur on land where carbon projects take place. A further 270 species with too-little protected habitat also overlap with the projects. The potential for positive benefits can be seen by looking at the two regions with the largest concentration of carbon projects in Australia. In the Murchison bioregion in Western Australia, a quarter of species rely on habitat that is not adequately protected elsewhere. In the Mulga bioregion in New South Wales and southwest Queensland, two-thirds of species rely on habitat inadequately protected elsewhere. The Mulga bioregion, one of two in Australia where the carbon credit scheme may protect threatened species. Shutterstock Lessons for nature repair Australia’s nature repair legislation came into effect in late 2023. It creates a framework for the nature repair market which is expected to launch early next year. Our findings provide important lessons for this market. Most importantly, they show a lowest-cost approach to generating credits is unlikely to benefit biodiversity. It will drive projects to marginal areas that do not overlap the ranges of species threatened by habitat loss. If nature repair investment is to prevent species extinctions, the Australian government must ensure taxpayer funds actually achieve these outcomes. The best way to do that is to speed up the progress of promised environmental law reform. Likewise, as global conservation increasingly looks to private finance and biodiversity markets, we must ensure funds are delivered to where they are most needed. Penny van Oosterzee is a Director of the Thiaki Rainforest Research Project, which generates Australian Carbon Credit Units as part of a restoration and research project in the Wet Tropics of Australia. Penny van Oosterzee has been a partner for two Australian Research Council projects. Jayden Engert receives funding from the Australian Commonwealth Government through an Australian Government Research Training Program Scholarship.

Negotiations Stall Over Some Crucial Issues on Final Day of UN Biodiversity Summit in Colombia

At the United Nations biodiversity summit in Colombia, negotiators struggle to find common ground on key issues, such as how to finance protections for 30% of the Earth's wild species by 2023 and how to make payments for nature’s genetic data

CALI, Colombia (AP) — At the United Nations biodiversity summit in Colombia, negotiators have struggled to find common ground on key issues.These include how to finance protections for 30% of the world's plants and animals by 2030, how to establish a permanent body for Indigenous peoples and how to make payments for nature’s genetic data that's used to create commercial products.The two-week conference, known as COP16, was due to wrap up Friday, although observers say negotiations could go into the weekend. In 2022, the biodiversity summit in Montreal, COP15, established a framework for countries to go about saving plummeting global ecosystems. This year’s follow-up summit was to put plans into motion. "COP15 was all about the ‘what’; this was supposed to be about the ‘how,’” Georgina Chandler, head of policy and campaigns at The Zoological Society of London, told The Associated Press. Wealthy nations pledged in Montreal’s summit to raise $20 billion in annual conservation financing for developing nations by 2025 — with that rising to $30 billion annually by 2030. “I don’t think we’ve seen governments come here with increased commitments towards the $20 billion significant enough that we’re going to achieve that," Chandler said. "That’s fallen a bit short.”The lack of financial pledges from wealthy countries prompted 20 ministers from the Global South to release a joint statement calling for the need to build trust among nations and for the Global North to meet its finance targets. In the run-up to negotiations, over 230 businesses and financial institutions demanded stronger policy ambitions to address the growing risks of nature loss, said Eva Zabey, CEO of Business for Nature. “In the final stretch at COP16, negotiations are stalling on crucial issues — including the mobilization of meaningful financial resources and a way for companies to ensure the benefits of nature are valued and shared fairly,” Zabey said. “We need governments to put aside their differences and demonstrate real and urgent leadership to deliver a strong COP16 outcome that incentivizes and drives necessary business action, further and faster, to halt and reverse nature loss by 2030,” she said. Who owns nature's DNA was a major topic at the summit. There was tension between poorer and developed countries over digital sequence information on genetic resources (DSI). This would oblige the sharing of benefits when genetic resources from animals, plants or microorganisms are used in biotechnologies. In Montreal, countries agreed to set up a global fund. “The DSI fund was scheduled to be adopted here two years ago. There is no clarity on how money will be gathered from companies,” said Oscar Soria, director of The Common Initiative. “As the text reads it is purely voluntary.” Sources told AP that there has been significant back and forth over wording in the draft agreement by nations. ’It’s clear that a number of points are going down to the wire in the COP16 negotiations," Catherine Weller, Director of Global Policy at charity Fauna & Flora said. One of the biggest controversies during talks was the blocking by a few countries of a Permanent Subsidiary Body for Indigenous Peoples and local communities, who Weller says bring valuable insights to many discussions. “We urge the negotiators to step up and ensure this is finalized,” she said.The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org.Copyright 2024 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.Photos You Should See - Sept. 2024

Green farming budget freeze 'will hit nature work'

Environmental groups warn that next year's farm payments budget will not be enough to protect nature.

Green farming budget freeze 'will hit nature work'Getty ImagesEnvironmental groups say more money needs to be invested in the annual farm payments budgetEnvironmental groups have warned that work to boost biodiversity across the UK countryside will be put at risk by the government’s decision to freeze the level of payments to farms in England.Farmers - already angry at changes to inheritance tax rules announced in the Budget - have been told payments from the public purse will be frozen next year.The Wildlife Trusts say the decision leaves a "monumental gap" between current environmental land management scheme (Elms) funding and what is needed to help farmers protect and boost wildlife and its habitats, while still producing food.The government said it would maintain the £2.4bn current level of farm payments in England for 2025/26, and that its commitment to farming was "steadfast".James GrindalJames Grindal says the government has failed to protect smaller family farmsOne farmer told the BBC he no longer believed the government understood the pressures of producing the nation’s food and protecting the countryside.James Grindal, a mixed arable and livestock farmer in Leicestershire, said: “I wouldn’t think the government has any idea."I think they ought to come and see the reality - the coalface of putting food on people’s plates."In Wednesday's Budget, the Chancellor announced that, while there would continue to be no inheritance tax due on combined business and agricultural assets worth less than £1m, above that there would be a 50% relief, at an effective rate of 20%, from April 2026.While some maintain the new policy is designed in part to cover large-scale landowners who may have invested in farmland for the tax benefit, many in farming say the £1m limit will hit small family farms hardest.Mr Grindal, who has two sons, aged 17 and 19, said he could be hit twice by the changes – on handing down the family farm, and if landowners sell off the land he rents.CLAVictoria Vyvyan from the CLA said the decision to freeze the farming budget would hit sustainable food production"I explained to my youngest son, who asked what the implications were, that if you take 20% off something every time someone dies, it’s not long before you get to nought," he said.“The Chancellor said she wants to protect small farms, but she is protecting the person who made a lot of money somewhere, bought a nice house with 20, 30, 50 acres to have a few horses on."Liberal Democrat environment spokesman Tim Farron said of the changes to agricultural property inheritance tax relief: "This is a family farm tax which risks ringing the death knell for local farmers and the small businesses who rely on them."Conservationists and environmental groups have spoken out on the government’s plans to maintain the farming payments budget at its current annual level of £2.4bn, the majority of which goes on environmental land management schemes.The Wildlife Trusts said around £3.1bn was needed for environmental farming schemes in England, and that maintaining the budget at current levels was a real-terms cut.'Largest ever budget'Elliot Chapman-Jones, the Trusts’ head of public affairs, said: “Ultimately, there is a monumental gap between current funding and what is needed to reverse wildlife declines, clean up rivers and significantly reduce the use of chemicals on farms."Tom Lancaster, land, food and farming analyst at the Energy and Climate Intelligence Unit think tank, said all the budget did was "maintain the status quo, just about keeping the show on the road for now".The Country Land and Business Association's (CLA) president Victoria Vyvyan said the decision to freeze the budget at the same level would hit hard-pressed farmers.She added: "It could hit sustainable food production and undermine improvements to wildlife habitats, flood management and access to nature."The government said the £2.4bn farming budget for England in 2025/26 would still be the “largest ever budget directed at sustainable food production and nature’s recovery”.Minister for Food Security and Rural Affairs Daniel Zeichner said: “Our commitment to farmers and the vital role they play to feed our nation remains steadfast.“That is why this government will commit to the largest ever budget directed at sustainable food production and nature’s recovery in our country’s history, enabling us to keep momentum on the path to a more resilient and sustainable farming sector.”

Cape nature reserve granted Green Coast Status

At a special ceremony, WESSA awarded Green Coast Status to Blaauwberg Nature Reserve for the fifth time this year. The post Cape nature reserve granted Green Coast Status appeared first on SA People.

Cape Town’s Blaauwberg Nature Reserve has been again awarded Green Coast Status this year. Markedly, it is the fifth time that the Wildlife and Environment Society of South Africa (WESSA) has awarded this nature reserve this prestigious status. The award recognises the work that those involved are doing in protecting the environment. About Green Coast Status WESSA, founder of the programme, presented official Green Coast Status to the Blaauwberg Nature Reserve at a special ceremony. The event was held at the Two Oceans Aquarium on 28 October 2024. The award is a recognition of the hard work and effort put in by the parties involved. These include individuals from the Environmental Management Department and the Friends of Blaauwberg Conservation Area. The Green Coast Awards recognise local conservation champions and towns for their effective environmental practices and support of nature-based tourism. As part of WESSA’s advocacy efforts, these awards also provide a platform for citizen science monitoring projects (such as water quality testing and biodiversity surveys), local community activism, and environmental education. These empower individuals to take action in protecting South Africa’s coastlines. About Blaauwberg Nature Reserve The Blaauwberg Nature Reserve in the Cape covers approximately 2 000 hectares of coastal terrain, including inland koppies and flats. It is home to critically endangered vegetation and has a seven-kilometre coastline. Markedly, the Blaauwberg Hill in the reserve is one of the rare spots in the world where you can view two UNESCO World Heritage Sites. These are Table Mountain and Robben Island. Along this stretch of coastline, the Green Coast Zone promotes conservation, sustainable tourism and environmental education. Eddie Andrews, City of Cape Town’s Deputy Mayor and Mayoral Committee Member for Spatial Planning and Environment, said that this achievement comes as a result of the City’s Environmental Management Department and its implementing partner, the Friends of Blaauwberg Conservation Area’s collective efforts. These include ‘actively monitoring, maintaining, and ensuring the accessibility of the coastline, while providing opportunities for environmental education, sustainable tourism, and the empowerment of local communities’, said Andrews. “Today we can proudly say that Blaauwberg Nature Reserve is a beacon for coastal conservation in Cape Town and South Africa. I am pleased that we have set the ‘Green’ bar.”Eddie Andrews. The post Cape nature reserve granted Green Coast Status appeared first on SA People.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.