Cookies help us run our site more efficiently.

By clicking “Accept”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts. View our Privacy Policy for more information or to customize your cookie preferences.

Across Farm Country, Fertilizer Pollution Impacts Not Just Health, but Water Costs, Too

News Feed
Wednesday, May 1, 2024

When Jeff Broberg and his wife, Erica, moved to their 170-acre bean and grain farm in Winona, Minnesota in 1986, their well water measured at 8.6 ppm for nitrates. These nitrogen-based compounds, common in agricultural runoff, are linked to multiple cancers and health issues for those exposed. Each year, the measurement in their water kept creeping up. In the late 1990s, Broberg decided it was time to source from elsewhere. He began hauling eight one-gallon jugs and two five-gallon jugs from his friend Mike’s house. That was his drinking water for the week. Six years ago, Broberg said, he was “getting too old to haul that water in the middle of the winter.” So, he installed his own reverse-osmosis water filtration system. The measurement of nitrates in his well has now reached up to 22 ppm. Post-filtration, the levels are almost nonexistent. Broberg, a retired geologist, has committed what he calls his “encore career” to advocating for clean water in Minnesota. He only leases out around 40 percent of his tillable land and has retired much of the rest due to groundwater pollution concerns. Almost one year ago, a group he co-founded, the Minnesota Well Owners Organization, joined other groups to petition the U.S. Environmental Protection Agency (EPA) to address groundwater contamination in southeast Minnesota. The EPA agreed, stating that “further action is needed to protect public health” and requested that the state create a plan for testing, education and supplying alternative drinking water to those most affected. Advocates in Wisconsin filed a petition, too. Last month, 13 separate groups in Iowa did the same. This advocacy comes in light of increased regional attention on nitrate pollution and its health effects. In Nebraska, researchers have connected high birth defect rates with exposure to water contaminated with nitrates. In Wisconsin, experts warn that exposure to nitrates can increase the risk of colon cancer. Access to clean water, as defined by the United Nations, is a human right. And yet many currently don’t have that right, even in a country where potable water is taken for granted. What’s more, the cost of clean water falls more heavily on less populated areas, where fewer residents shoulder the bill. A report by the Union of Concerned Scientists concluded that the cost for rural Iowa residents—who often live in areas with smaller, more expensive water systems—could be as much as $4,960 more per person per year to filter out nitrates from their water than their counterparts in cities like Des Moines. Nitrates are affecting water utilities from California to D.C., and the reason comes down to one major source: Agricultural runoff. Where The Trouble Begins: ‘A Leaky System’ The root of water-quality issues in the Midwest starts with its cropland drainage system, a network of underground, cylindrical tiles that drain excess water and nutrients from the land and funnel it downstream. Those tiles, which were first installed in the mid-1800s and have now largely been replaced with plastic pipes, ultimately allowed farmers to grow crops on land that was once too wet to farm. Lee Tesdell is the fifth generation to own his family’s 80-acre farm in Polk County, Iowa. Tesdell explained that when his European ancestors settled in the Midwest, they plowed the prairie and switched from deeply rooted perennial plants to shallow-rooted annual crops like wheat, oats, and corn instead. “Then we had more exposed soil and less water infiltration because the roots weren’t as deep,” he said. “The annual crops and drainage tile started to create this leaky system.” This “leaky system” refers to what is not absorbed by the crops on the field, most dangerously, in this case, fertilizer. “It’s a leaky system because it’s not in sync,” said Iowa water quality expert Chris Jones, author of The Swine Republic book (and blog).  “And farmers know they’re going to lose some fertilizer. As a consequence, they apply extra as insurance.” Fertilizer as Poison The U.S. is the top corn-producing country in the world, with states like Iowa, Illinois, Nebraska, and Minnesota supplying 32 percent of corn globally. Corn produces lower yields if it is nitrogen deficient, so farmers apply nitrogen-heavy fertilizer to the crop. In fact, they must use fertilizer in order to qualify for crop insurance. The ammonia in the fertilizer oxidizes existing nitrogen in the soil, turning it into highly water-soluble nitrates that aren’t fully absorbed by the corn. Those nitrates leak into aquifers. In 1960, farmers used approximately 3 million tons of nitrogen fertilizer a year. In 2021, that number was closer to 19 million. Farmers can use a nitrogen calculator to determine how much nitrogen they need—but nearly 70 percent of farmers use more than the recommended amount. “Other people also have an American dream, and they want to be able to turn on their faucet and have clean water, or know that if they put their baby in a bath, they’re not going to end up in the hospital with major organs shutting down because they have been poisoned.” As Jones explains in his blog, even with “insurance” fertilizer use, yields can often turn out the same: “What happened to that extra 56 pounds of nitrogen that you bought? Well, some might’ve ended up sequestered in the soil, but a lot of it ran off into lakes and streams or leached down into the aquifer (hmm, do you reckon that’s why the neighbor’s well is contaminated?), and some off-gassed to the atmosphere as nitrous oxide, a substance that has 300 times more warming potential than carbon dioxide.” Commercial fertilizer is just one contributor to high nitrate levels in groundwater. The other main factor, manure, is also increasing as CAFOs become more prevalent. Nancy Utesch and her husband, Lynn, live on 150 acres of land in Kewaunee County, Wisconsin, where they rotationally graze beef cattle. In 2004, a family nearby became very ill from E. coli poisoning in their water. “I was really upset that this had happened in our county,” she said. “A lot of the support was for the polluting farmer, and you know, farming is right there with the American flag and grandma’s apple pie.” Utesch worries that the current system of industrialized agriculture has created a world where people living closest to the polluters do not have access to clean water themselves, and are afraid to speak out against the actions of their neighbors. “Other people also have an American dream, and they want to be able to turn on their faucet and have clean water, or know that if they put their baby in a bath, that they’re not going to end up in the hospital with major organs shutting down because they have been poisoned,” she said. “If they clean a scrape because their grandchild fell down in the driveway, they could be hurting them if they use the water from the tap.” The Plight of the Small Town In June 2022, fertilizer runoff pushed Des Moines Water Works, the municipal agency charged with overseeing drinking water, to restart operations of their nitrate removal system—one of the largest in the world—at a cost of up to $16,000 per day. Des Moines finances its removal system from its roughly 600,000 ratepayers. “Financially, Des Moines can spread out needed treatment over many thousands of customers, whereas a small town can’t do that,” Jones said. “If you have a small town of 1,000 people, your well gets contaminated, and you need a $2 million treatment plan to clean up the water, that’s a burden.” “Financially, Des Moines can spread out needed treatment over many thousands of customers, whereas a small town can’t do that.” While cities like Des Moines are willing to pay the cost to remove nitrates, other small communities will have a tougher time doing so. And once their aquifer is contaminated, “it doesn’t go away for a long time, in some cases, thousands of years,” Jones said. Utica, Minnesota, which has fewer than 300 residents, has two deep wells, both measuring at unsafe levels for nitrates. “[Residents are] scared to death,” Broberg, who lives in a neighboring town, said. “The city has investigated water treatment expenses at around $3 million for reverse osmosis, and they only last 10 years. A town of 85 households can’t amortize that debt by themselves.” The town has applied for a grant from the state and is waiting to hear back. Another nearby town, Lewiston, dug a new, deeper well to solve their nitrate problem. “They went down there, and the water was contaminated with radium. It’s radioactive,” Broberg said. “So they kept their nitrate-contaminated well and their radium-contaminated well and blended the water so that it doesn’t exceed the health risk limit for either nitrates or radium.” However, as Chris Rogers reported in the Winona Post, that plan didn’t quite work. Thus, Lewiston dug another well at a cost of $904,580, and is now sourcing all of their water from that new well. That well is now testing trace amounts of nitrates and has less radium than before. Many rural residents also rely on private, personal well systems, which aren’t regulated for contaminants, to source their water. Forty million people rely on well water nationwide. “Public water systems have these maximum contaminant levels that are set by the EPA. There are rules and regulations that they have to follow, but private wells aren’t covered by the Safe Drinking Water Act,” said Stacy Woods, research director of the food and environment program at the Union of Concerned Scientists. “It’s really on individual well owners to decide whether to test their wells and what contaminants to test their wells for, and these tests can be really expensive.” Broberg and his group are working to extend the protection of the Safe Drinking Water Act to well water. In southeast Minnesota, the EPA agreed to the plan, though the path forward is still uncertain as funding packages move through the legislature. “I’ve spoken with people who simply don’t want to test their well water because they can’t afford to do much about it if they find out that their nitrate levels are unsafe.” Without these protections in place, or intervention at the pollution source, rural residents often find the responsibility of clean water falling on them. “I’ve spoken with people who simply don’t want to test their well water because they can’t afford to do much about it if they find out that their nitrate levels are unsafe,” Food and Water Watch Legal Director Tarah Heinzen said. “They are basically powerless to protect their drinking water resources from sources of pollution that aren’t being adequately regulated by the state.” The solution, according to Woods, “is to protect the drinking water sources from that pollution in the first place.” Conservation on the Farm One way to do this is by using less fertilizer on the field. Another is to introduce on-the-field and edge-of-field conservation practices, like Tesdell is doing on his Iowa family farm. Tesdell’s farm is not the typical Iowa farm, which averages 359 acres. Tesdell’s is 80. He does, however, rent 50 acres to a neighbor who grows corn and soybeans, like most Iowa farmers. Where Tesdell’s farm differs is how he deals with excess nitrate. In 2012, Tesdell, who has always been drawn to conservation, became interested in adding cover cropping to his fields. Through his research, he came across other conservation practices such as wood chip bioreactors. He installed his first bioreactor that same year. “There’s a chemical and biological reaction between the wood chips and the nitrate in the tile water,” Tesdell said. “Much of the nitrate then is turned into nitrogen gas, which is a harmless gas. We don’t take out 100 percent of the nitrate, but we take out a good percentage.” According to Iowa State University, a typical bioreactor costs around $10,000 to design and install. Tesdell paid for his bioreactor partly out of pocket, but also acquired funding from the Iowa Soybean Association. For his saturated buffer, an edge-of-field practice that redirects excess nitrates through vegetation, Tesdell received funding from the USDA’s Environmental Quality Incentives Program (EQIP). To install the saturated buffer, Tesdell needed his neighbor to agree. “We put that one on a tile that actually comes from my neighbor’s farm. Because the creek is going through my farm, it’s a more direct route to come off a hill [on] his farm,” he said. “Neighbors need to work together.” Roughly 80 percent of the farmland in Iowa is owned by offsite landlords, who rent it out to farmers. Tesdell cites this as  a roadblock to conservation practices. “If the landowner doesn’t care, why would an operator care? They want to pull in with their 24-row planter, plant their corn, come in with the 12-row corn head in October and harvest, then truck it off to the ethanol plant,” he said. “I don’t blame them.” Iowa currently has a “Nutrient Reduction Strategy” plan, which outlines voluntary efforts farmers can take to reduce their pollution. There is no active legislation that limits how much fertilizer farmers use on their cropland. Heinzen, of Food and Water Watch, explained that agricultural pollution is largely unregulated, with the exception of concentrated animals feeding operations (CAFOs).  “In fact, even most CAFOs are completely unregulated, because EPA has completely failed to implement Congress’s intent to regulate this industry, which we’re suing them over,” she said, referring to a new brief filed by multiple advocacy groups in February aimed at upgrading CAFO pollution regulation. Even Des Moines Waterworks, with its state-of-the-art nitrate removal facility, is calling for change. “We cannot keep treating water quality only at the receiving end,” spokesperson Melissa Walker said. “There needs to be a plan for every acre of farmland in Iowa and how its nutrients will be managed, as well as every animal and its manure.” “You’re either going to have to change your practices, change your farming, or you’re going to have the accept the risk of preventable disease.” Some communities have sued for damages related to nitrate-contaminated groundwater. In Millsboro, Delaware, residents received a payout but still have contaminated water. In Boardman, Oregon, five residents are suing the Port of Morrow and multiple farms and CAFOs due to their well-water testing “at more than four times the safe limit established by the U.S. EPA,” Alex Baumhardt reported in the Oregon Capital Chronicle. A few weeks ago, 1,500 tons of liquid nitrogen were spilled into an Iowa river. No living fish were found nearby. Today, polluted water flows downstream into the Gulf of Mexico, where it causes “dead zones” stripped of marine life. “You’re either going to have to change your practices, change your farming, or you’re going to have the accept the risk of preventable disease,” Broberg said. “And you need to put that equation in your family budget. If you’re going to get bladder cancer, diabetes, birth defects, juvenile cancers—what are those going to cost?” When asked why protecting water is so important, Tesdell paused and looked away. His voice cracked with emotion. “It’s for the grandkids.” The post Across Farm Country, Fertilizer Pollution Impacts Not Just Health, but Water Costs, Too appeared first on Civil Eats.

In the late 1990s, Broberg decided it was time to source from elsewhere. He began hauling eight one-gallon jugs and two five-gallon jugs from his friend Mike’s house. That was his drinking water for the week. Six years ago, Broberg said, he was “getting too old to haul that water in the middle of the […] The post Across Farm Country, Fertilizer Pollution Impacts Not Just Health, but Water Costs, Too appeared first on Civil Eats.

When Jeff Broberg and his wife, Erica, moved to their 170-acre bean and grain farm in Winona, Minnesota in 1986, their well water measured at 8.6 ppm for nitrates. These nitrogen-based compounds, common in agricultural runoff, are linked to multiple cancers and health issues for those exposed. Each year, the measurement in their water kept creeping up.

In the late 1990s, Broberg decided it was time to source from elsewhere. He began hauling eight one-gallon jugs and two five-gallon jugs from his friend Mike’s house. That was his drinking water for the week.

Six years ago, Broberg said, he was “getting too old to haul that water in the middle of the winter.” So, he installed his own reverse-osmosis water filtration system. The measurement of nitrates in his well has now reached up to 22 ppm. Post-filtration, the levels are almost nonexistent.

Broberg, a retired geologist, has committed what he calls his “encore career” to advocating for clean water in Minnesota. He only leases out around 40 percent of his tillable land and has retired much of the rest due to groundwater pollution concerns. Almost one year ago, a group he co-founded, the Minnesota Well Owners Organization, joined other groups to petition the U.S. Environmental Protection Agency (EPA) to address groundwater contamination in southeast Minnesota.

The EPA agreed, stating that “further action is needed to protect public health” and requested that the state create a plan for testing, education and supplying alternative drinking water to those most affected. Advocates in Wisconsin filed a petition, too. Last month, 13 separate groups in Iowa did the same.

This advocacy comes in light of increased regional attention on nitrate pollution and its health effects. In Nebraska, researchers have connected high birth defect rates with exposure to water contaminated with nitrates. In Wisconsin, experts warn that exposure to nitrates can increase the risk of colon cancer.

Access to clean water, as defined by the United Nations, is a human right. And yet many currently don’t have that right, even in a country where potable water is taken for granted. What’s more, the cost of clean water falls more heavily on less populated areas, where fewer residents shoulder the bill. A report by the Union of Concerned Scientists concluded that the cost for rural Iowa residents—who often live in areas with smaller, more expensive water systems—could be as much as $4,960 more per person per year to filter out nitrates from their water than their counterparts in cities like Des Moines. Nitrates are affecting water utilities from California to D.C., and the reason comes down to one major source: Agricultural runoff.

Where The Trouble Begins: ‘A Leaky System’

The root of water-quality issues in the Midwest starts with its cropland drainage system, a network of underground, cylindrical tiles that drain excess water and nutrients from the land and funnel it downstream. Those tiles, which were first installed in the mid-1800s and have now largely been replaced with plastic pipes, ultimately allowed farmers to grow crops on land that was once too wet to farm.

Lee Tesdell is the fifth generation to own his family’s 80-acre farm in Polk County, Iowa. Tesdell explained that when his European ancestors settled in the Midwest, they plowed the prairie and switched from deeply rooted perennial plants to shallow-rooted annual crops like wheat, oats, and corn instead.

“Then we had more exposed soil and less water infiltration because the roots weren’t as deep,” he said. “The annual crops and drainage tile started to create this leaky system.”

This “leaky system” refers to what is not absorbed by the crops on the field, most dangerously, in this case, fertilizer.

“It’s a leaky system because it’s not in sync,” said Iowa water quality expert Chris Jones, author of The Swine Republic book (and blog).  “And farmers know they’re going to lose some fertilizer. As a consequence, they apply extra as insurance.”

Fertilizer as Poison

The U.S. is the top corn-producing country in the world, with states like Iowa, Illinois, Nebraska, and Minnesota supplying 32 percent of corn globally. Corn produces lower yields if it is nitrogen deficient, so farmers apply nitrogen-heavy fertilizer to the crop. In fact, they must use fertilizer in order to qualify for crop insurance. The ammonia in the fertilizer oxidizes existing nitrogen in the soil, turning it into highly water-soluble nitrates that aren’t fully absorbed by the corn. Those nitrates leak into aquifers.

In 1960, farmers used approximately 3 million tons of nitrogen fertilizer a year. In 2021, that number was closer to 19 million. Farmers can use a nitrogen calculator to determine how much nitrogen they need—but nearly 70 percent of farmers use more than the recommended amount.

“Other people also have an American dream, and they want to be able to turn on their faucet and have clean water, or know that if they put their baby in a bath, they’re not going to end up in the hospital with major organs shutting down because they have been poisoned.”

As Jones explains in his blog, even with “insurance” fertilizer use, yields can often turn out the same: “What happened to that extra 56 pounds of nitrogen that you bought? Well, some might’ve ended up sequestered in the soil, but a lot of it ran off into lakes and streams or leached down into the aquifer (hmm, do you reckon that’s why the neighbor’s well is contaminated?), and some off-gassed to the atmosphere as nitrous oxide, a substance that has 300 times more warming potential than carbon dioxide.”

Commercial fertilizer is just one contributor to high nitrate levels in groundwater. The other main factor, manure, is also increasing as CAFOs become more prevalent.

Nancy Utesch and her husband, Lynn, live on 150 acres of land in Kewaunee County, Wisconsin, where they rotationally graze beef cattle. In 2004, a family nearby became very ill from E. coli poisoning in their water.

“I was really upset that this had happened in our county,” she said. “A lot of the support was for the polluting farmer, and you know, farming is right there with the American flag and grandma’s apple pie.”

Utesch worries that the current system of industrialized agriculture has created a world where people living closest to the polluters do not have access to clean water themselves, and are afraid to speak out against the actions of their neighbors.

“Other people also have an American dream, and they want to be able to turn on their faucet and have clean water, or know that if they put their baby in a bath, that they’re not going to end up in the hospital with major organs shutting down because they have been poisoned,” she said. “If they clean a scrape because their grandchild fell down in the driveway, they could be hurting them if they use the water from the tap.”

The Plight of the Small Town

In June 2022, fertilizer runoff pushed Des Moines Water Works, the municipal agency charged with overseeing drinking water, to restart operations of their nitrate removal system—one of the largest in the world—at a cost of up to $16,000 per day. Des Moines finances its removal system from its roughly 600,000 ratepayers.

“Financially, Des Moines can spread out needed treatment over many thousands of customers, whereas a small town can’t do that,” Jones said. “If you have a small town of 1,000 people, your well gets contaminated, and you need a $2 million treatment plan to clean up the water, that’s a burden.”

“Financially, Des Moines can spread out needed treatment over many thousands of customers, whereas a small town can’t do that.”

While cities like Des Moines are willing to pay the cost to remove nitrates, other small communities will have a tougher time doing so. And once their aquifer is contaminated, “it doesn’t go away for a long time, in some cases, thousands of years,” Jones said.

Utica, Minnesota, which has fewer than 300 residents, has two deep wells, both measuring at unsafe levels for nitrates.

“[Residents are] scared to death,” Broberg, who lives in a neighboring town, said. “The city has investigated water treatment expenses at around $3 million for reverse osmosis, and they only last 10 years. A town of 85 households can’t amortize that debt by themselves.”

The town has applied for a grant from the state and is waiting to hear back.

Another nearby town, Lewiston, dug a new, deeper well to solve their nitrate problem.

“They went down there, and the water was contaminated with radium. It’s radioactive,” Broberg said. “So they kept their nitrate-contaminated well and their radium-contaminated well and blended the water so that it doesn’t exceed the health risk limit for either nitrates or radium.”

However, as Chris Rogers reported in the Winona Post, that plan didn’t quite work. Thus, Lewiston dug another well at a cost of $904,580, and is now sourcing all of their water from that new well. That well is now testing trace amounts of nitrates and has less radium than before.

Many rural residents also rely on private, personal well systems, which aren’t regulated for contaminants, to source their water. Forty million people rely on well water nationwide.

“Public water systems have these maximum contaminant levels that are set by the EPA. There are rules and regulations that they have to follow, but private wells aren’t covered by the Safe Drinking Water Act,” said Stacy Woods, research director of the food and environment program at the Union of Concerned Scientists. “It’s really on individual well owners to decide whether to test their wells and what contaminants to test their wells for, and these tests can be really expensive.”

Broberg and his group are working to extend the protection of the Safe Drinking Water Act to well water. In southeast Minnesota, the EPA agreed to the plan, though the path forward is still uncertain as funding packages move through the legislature.

“I’ve spoken with people who simply don’t want to test their well water because they can’t afford to do much about it if they find out that their nitrate levels are unsafe.”

Without these protections in place, or intervention at the pollution source, rural residents often find the responsibility of clean water falling on them.

“I’ve spoken with people who simply don’t want to test their well water because they can’t afford to do much about it if they find out that their nitrate levels are unsafe,” Food and Water Watch Legal Director Tarah Heinzen said. “They are basically powerless to protect their drinking water resources from sources of pollution that aren’t being adequately regulated by the state.”

The solution, according to Woods, “is to protect the drinking water sources from that pollution in the first place.”

Conservation on the Farm

One way to do this is by using less fertilizer on the field. Another is to introduce on-the-field and edge-of-field conservation practices, like Tesdell is doing on his Iowa family farm.

Tesdell’s farm is not the typical Iowa farm, which averages 359 acres. Tesdell’s is 80. He does, however, rent 50 acres to a neighbor who grows corn and soybeans, like most Iowa farmers.

Where Tesdell’s farm differs is how he deals with excess nitrate. In 2012, Tesdell, who has always been drawn to conservation, became interested in adding cover cropping to his fields. Through his research, he came across other conservation practices such as wood chip bioreactors. He installed his first bioreactor that same year.

“There’s a chemical and biological reaction between the wood chips and the nitrate in the tile water,” Tesdell said. “Much of the nitrate then is turned into nitrogen gas, which is a harmless gas. We don’t take out 100 percent of the nitrate, but we take out a good percentage.”

According to Iowa State University, a typical bioreactor costs around $10,000 to design and install. Tesdell paid for his bioreactor partly out of pocket, but also acquired funding from the Iowa Soybean Association. For his saturated buffer, an edge-of-field practice that redirects excess nitrates through vegetation, Tesdell received funding from the USDA’s Environmental Quality Incentives Program (EQIP). To install the saturated buffer, Tesdell needed his neighbor to agree.

“We put that one on a tile that actually comes from my neighbor’s farm. Because the creek is going through my farm, it’s a more direct route to come off a hill [on] his farm,” he said. “Neighbors need to work together.”

Roughly 80 percent of the farmland in Iowa is owned by offsite landlords, who rent it out to farmers. Tesdell cites this as  a roadblock to conservation practices.

“If the landowner doesn’t care, why would an operator care? They want to pull in with their 24-row planter, plant their corn, come in with the 12-row corn head in October and harvest, then truck it off to the ethanol plant,” he said. “I don’t blame them.”

Iowa currently has a “Nutrient Reduction Strategy” plan, which outlines voluntary efforts farmers can take to reduce their pollution. There is no active legislation that limits how much fertilizer farmers use on their cropland.

Heinzen, of Food and Water Watch, explained that agricultural pollution is largely unregulated, with the exception of concentrated animals feeding operations (CAFOs).  “In fact, even most CAFOs are completely unregulated, because EPA has completely failed to implement Congress’s intent to regulate this industry, which we’re suing them over,” she said, referring to a new brief filed by multiple advocacy groups in February aimed at upgrading CAFO pollution regulation.

Even Des Moines Waterworks, with its state-of-the-art nitrate removal facility, is calling for change.

“We cannot keep treating water quality only at the receiving end,” spokesperson Melissa Walker said. “There needs to be a plan for every acre of farmland in Iowa and how its nutrients will be managed, as well as every animal and its manure.”

“You’re either going to have to change your practices, change your farming, or you’re going to have the accept the risk of preventable disease.”

Some communities have sued for damages related to nitrate-contaminated groundwater. In Millsboro, Delaware, residents received a payout but still have contaminated water. In Boardman, Oregon, five residents are suing the Port of Morrow and multiple farms and CAFOs due to their well-water testing “at more than four times the safe limit established by the U.S. EPA,” Alex Baumhardt reported in the Oregon Capital Chronicle.

A few weeks ago, 1,500 tons of liquid nitrogen were spilled into an Iowa river. No living fish were found nearby. Today, polluted water flows downstream into the Gulf of Mexico, where it causes “dead zones” stripped of marine life.

“You’re either going to have to change your practices, change your farming, or you’re going to have the accept the risk of preventable disease,” Broberg said. “And you need to put that equation in your family budget. If you’re going to get bladder cancer, diabetes, birth defects, juvenile cancers—what are those going to cost?”

When asked why protecting water is so important, Tesdell paused and looked away. His voice cracked with emotion. “It’s for the grandkids.”

The post Across Farm Country, Fertilizer Pollution Impacts Not Just Health, but Water Costs, Too appeared first on Civil Eats.

Read the full story here.
Photos courtesy of

Microplastics Linked To High Blood Pressure, Diabetes, Stroke

By Dennis Thompson HealthDay ReporterTUESDAY, April 1, 2025 (HealthDay News) -- Microplastics appear to be contributing to chronic diseases in...

By Dennis Thompson HealthDay ReporterTUESDAY, April 1, 2025 (HealthDay News) -- Microplastics appear to be contributing to chronic diseases in shoreline areas of the United States, a new study suggests.High blood pressure, diabetes and stroke rates are higher in coastal or lakefront areas with greater concentrations of microplastics in the environment, researchers reported at a meeting of the American College of Cardiology (ACC).The results also suggested a dose relationship, where higher concentrations of microplastics pollution are associated with more chronic disease, researchers said.“This study provides initial evidence that microplastics exposure has an impact on cardiovascular health, especially chronic, noncommunicable conditions like high blood pressure, diabetes and stroke," lead investigator Sai Rahul Ponnana, a research data scientist at Case Western Reserve School of Medicine in Cleveland, said in a news release.Microplastics are tiny plastic particles as small as 1 nanometer; by comparison, a strand of human hair is about 80,000 nanometers wide.These particles are released as larger pieces of plastic break down, and can come from food and beverage packaging, consumer products and building materials, researchers said in background notes.People can be exposed to microplastics in the water they drink, the food they eat and the air they breathe.For this study, researchers linked U.S. Centers for Disease Control and Prevention (CDC) data on chronic illness rates with federal data on microplastics concentrations in the sediment along coastal and lakeshore areas in 555 census tracts. The data ran from 2015 to 2019.Microplastics ranked among the top risk factors associated with chronic illness, researchers found. They considered 154 factors, including income, employment rate and air pollution."When we included 154 different socioeconomic and environmental features in our analysis, we didn't expect microplastics to rank in the top 10 for predicting chronic noncommunicable disease prevalence,” Ponnana said.However, researchers noted that the study does not prove a direct cause-and-effect relationship between microplastics and chronic illness. More studies are needed to prove a concrete link and rule out other possible explanations.More research is also needed to determine the amount of exposure to microplastics that would have an impact on a person’s health, researchers added.In the meantime, people can help minimize microplastics exposure by reducing how much plastic they throw away."The environment plays a very important role in our health, especially cardiovascular health," Ponnana said. "As a result, taking care of our environment means taking care of ourselves."The findings were presented Monday at the ACC’s meeting in Chicago. Findings presented at medical meetings should be considered preliminary until published in a peer-reviewed journal.The U.S. Environmental Protection Agency has more on microplastics.SOURCE: American College of Cardiology, news release, March 25, 2025Copyright © 2025 HealthDay. All rights reserved.

Why the health risks from air pollution could be worse than we thought

A new study found elevated and previously overlooked health risks for communities living near industrial polluters.

Many people who live near heavy industry are routinely exposed to dozens of different pollutants, which can result in a multitude of health problems.Traditionally, environmental regulators have assessed the risks of chemical exposure on an individual basis. But that approach has led to underestimates of the total health risks faced by vulnerable populations, according to a new study.Now researchers at Johns Hopkins University have developed a new method for measuring the cumulative effects on human health of multiple toxic air pollutants. Their findings were published last week in Environmental Health Perspectives.Regulators typically measure community risk by looking at the primary health effects of individual chemicals, an approach that often fails to address their combined risks, said Keeve Nachman, the study’s senior author.Residents in disadvantaged communities are exposed to a toxic stew of chemicals daily, and they “don’t just breathe one at a time, [they] breathe all the chemicals in the air at once,” said Peter DeCarlo, another of the study’s authors.Follow Climate & environment“Very little has happened to protect these people. And one of the major reasons for that is that current approaches have not done a good job showing they’re in harm’s way,” Nachman said.“When we regulate chemicals, we pretend that we’re only exposed to one chemical at a time,” Nachman continued. “If we have each chemical and we only think about the most sensitive effect, but we ignore the fact that it could potentially cause all these other effects to different parts of the body, we are missing protecting people from the collective mixture of chemicals that act together.”Nachman, DeCarlo and their colleagues set out to more accurately account for the total burden of breathing multiple toxic air pollutants.The study assessed the risks faced by communities in southeastern Pennsylvania living near petrochemical facilities using a mobile laboratory to measure 32 hazardous air pollutants, including vinyl chloride, formaldehyde and benzene. The researchers developed real-time profiles of the pollution concentrations in the air and translated them into estimates of what people are actually breathing.Using these estimates and a database of the chemicals’ toxic effects on various organs, the researchers created projections of the long-term cumulative health impacts of the pollution.By looking past the immediate health effects of chemicals and measuring what happens as concentrations increase, negative health outcomes can be detected in other parts of the body, Nachman said.For example, while EPA risk assessments consider only the respiratory effects of formaldehyde, the study found potential health impacts in 10 other organ systems, including neurological, developmental and reproductive harms.The cumulative risk study appears at a fraught moment for environmental regulation. Although the Biden administration in November released a draft framework for monitoring the cumulative impact of chemical exposure, the Trump administration has announced plans to roll back dozens of Biden administration environmental rules and is considering shutting down the EPA’s Office of Research and Development.A spokesperson for the American Chemistry Council, an industry trade group, said in an email that the Johns Hopkins research “may provide some useful information” but that “further assessment, replication and validation will be needed” of the methods and substances assessed in the study.“ACC continues to support the development of scientifically robust data, methods and approaches to underpin cumulative risk assessments,” the spokesperson added.The EPA did not provide an immediate comment while it reviewed the study.Jen Duggan, the executive director of the Environmental Integrity Project, said communities often face higher health impacts than the EPA estimates due to their exposure to dangerous chemicals from multiple sources.“The authors of this paper powerfully demonstrate how EPA has repeatedly underestimated the true health risks for people living in the shadow of industrial polluters,” Duggan said.

Utah Bans Fluoride In Public Drinking Water

Republican Gov. Spencer Cox signed the legislation despite widespread opposition from dentists and national health organizations.

SALT LAKE CITY (AP) — Utah has become the first state to ban fluoride in public drinking water, despite widespread opposition from dentists and national health organizations.Republican Gov. Spencer Cox signed legislation late Thursday that bars cities and communities from deciding whether to add the mineral to their water systems.Fluoride strengthens teeth and reduces cavities by replacing minerals lost during normal wear and tear, according to the U.S. Centers for Disease Control and Prevention.Utah lawmakers who pushed for a ban said putting fluoride in water was too expensive. Cox, who grew up and raised his own children in a community without fluoridated water, compared it recently to being “medicated” by the government.The ban comes weeks after U.S. Health Secretary Robert F. Kennedy Jr., who has expressed skepticism about water fluoridation, was sworn into office.More than 200 million people in the U.S., or almost two-thirds of the population, receive fluoridated water through community water. The addition of low levels of fluoride to drinking water has long been considered one of the greatest public health achievements of the last century.But some cities across the country have gotten rid of fluoride from their water, and other municipalities are considering doing the same. A few months ago, a federal judge ordered the U.S. Environmental Protection Agency to regulate fluoride in drinking water because high levels could pose a risk to the intellectual development of children.We Don't Work For Billionaires. We Work For You.Big money interests are running the government — and influencing the news you read. While other outlets are retreating behind paywalls and bending the knee to political pressure, HuffPost is proud to be unbought and unfiltered. Will you help us keep it that way? You can even access our stories ad-free.You've supported HuffPost before, and we'll be honest — we could use your help again. We won't back down from our mission of providing free, fair news during this critical moment. But we can't do it without you.For the first time, we're offering an ad-free experience to qualifying contributors who support our fearless journalism. We hope you'll join us.You've supported HuffPost before, and we'll be honest — we could use your help again. We won't back down from our mission of providing free, fair news during this critical moment. But we can't do it without you.For the first time, we're offering an ad-free experience to qualifying contributors who support our fearless journalism. We hope you'll join us.Support HuffPostAlready contributed? Log in to hide these messages.The president of the American Dental Association, Brett Kessler, has said the amounts of fluoride added to drinking water are below levels considered problematic.Opponents warn the ban will disproportionately affect low-income residents who may rely on public drinking water having fluoride as their only source of preventative dental care. Low-income families may not be able to afford regular dentist visits or the fluoride tablets some people buy as a supplement in cities without fluoridation.The sponsor of the Utah legislation, Republican Rep. Stephanie Gricius, acknowledged fluoride has benefits, but said it was an issue of “individual choice” to not have it in the water.

Dozens of House Democrats push back on planned EPA research and development cuts

Dozens of House Democrats pushed back on planned Environmental Protection Agency (EPA) cuts in a Thursday letter to the agency. “We are particularly concerned by the proposal to eliminate up to 75 percent of employees within EPA’s Office of Research and Development (ORD),” the letter, from Rep. Greg Landsman (D-Ohio) and addressed to EPA Administrator...

Dozens of House Democrats pushed back on planned Environmental Protection Agency (EPA) cuts in a Thursday letter to the agency. “We are particularly concerned by the proposal to eliminate up to 75 percent of employees within EPA’s Office of Research and Development (ORD),” the letter, from Rep. Greg Landsman (D-Ohio) and addressed to EPA Administrator Lee Zeldin, reads. “Firing nearly 1,200 dedicated ORD public servants across the country would decimate the scientific backbone of EPA which provides independent, objective, and unparallelled research that informs Agency assessments and decision-making,” they added. The letter featured the signatures of over 60 House Democrats including Reps. Nikema Williams (Ga.), Ro Khanna (Calif.), Summer Lee (Pa.), Don Beyer (Va.), Joe Neguse (Colo.), Jamie Raskin (Md.), Pramila Jayapal (Wash.) and Rashida Tlaib (Mich.). The Hill reported last week that the EPA was considering the cutting of its science arm and dropping most of the employees of the branch, per documents reviewed by Democratic staff for the House Science, Space and Technology Committee. The termination of the Office of Research and Development as an EPA National Program Office is called for in a plan reviewed by committee staffers. Fifty percent to 70 percent of the 1,540 staffers in the office would be cut under the plan. “While no decisions have been made yet, we are actively listening to employees at all levels to gather ideas on how to better fulfill agency statutory obligations, increase efficiency, and ensure the EPA is as up-to-date and effective as ever,” EPA spokesperson Molly Vaseliou said in a previous statement. In his letter, Landsman said dropping “the majority of ORD employees would be particularly harmful to EPA’s work to address industrial pollution, contaminated air and drinking water, environmental health, and worsening natural disasters.” The Ohio Democrat also questioned the EPA about the reasoning behind the staff cuts in the plan and the way the agency is prepping “to mitigate the loss of scientific expertise, institutional knowledge, and subject matter capacity resulting from this proposed action.” The Hill has reached out to the EPA for comment.

When a 1-in-100 year flood washed through the Coorong, it made the vital microbiome of this lagoon healthier

The 2022 floods triggered shifts in the Coorong’s microbiome—similar to our gut bacteria on new diets—revealing why freshwater flows are vital to wetland health.

Darcy Whittaker, CC BYYou might know South Australia’s iconic Coorong from the famous Australian children’s book, Storm Boy, set around this coastal lagoon. This internationally important wetland is sacred to the Ngarrindjeri people and a haven for migratory birds. The lagoon is the final stop for the Murray River’s waters before they reach the sea. Tens of thousands of migratory waterbirds visit annually. Pelicans, plovers, terns and ibises nest, while orange-bellied parrots visit and Murray Cod swim. But there are other important inhabitants – trillions of microscopic organisms. You might not give much thought to the sedimentary microbes of a lagoon. But these tiny microbes in the mud are vital to river ecosystems, quietly cycling nutrients and supporting the food web. Healthy microbes make for a healthy Coorong – and this unassuming lagoon is a key indicator for the health of the entire Murray-Darling Basin. For decades, the Coorong has been in poor health. Low water flows have concentrated salt and an excess of nutrients. But in 2022, torrential rains on the east coast turned into a once-in-a-century flood, which swept down the Murray into the Coorong. In our new research, we took the pulse of the Coorong’s microbiome after this huge flood and found the surging fresh water corrected microbial imbalances. The numbers of methane producing microbes fell while beneficial nutrient-eating bacteria grew. Populations of plants, animals and invertebrates boomed. We can’t just wait for irregular floods – we have to find ways to ensure enough water is left in the river to cleanse the Coorong naturally. Under a scanning electron micrograph, the mixed community of microbes in water is visible. This image shows a seawater sample. Sophie Leterme/Flinders University, CC BY Rivers have microbiomes, just like us Our gut microbes can change after a heavy meal or in response to dietary changes. In humans, a sudden shift in diet can encourage either helpful or harmful microbes. In the same way, aquatic microbes respond to changes in salinity and freshwater flows. Depending on what changes are happening, some species boom and others bust. As water gets saltier in brackish lagoons, communities of microbes have to adapt or die. High salinity often favours microbes with anaerobic metabolisms, meaning they don’t need oxygen. But these tiny lifeforms often produce the highly potent greenhouse gas methane. The microbes in wetlands are a large natural source of the gas. While we know pulses of freshwater are vital for river health, they don’t happen often enough. The waters of the Murray-Darling Basin support most of Australia’s irrigated farming. Negotiations over how to ensure adequate environmental flows have been fraught – and long-running. Water buybacks have improved matters somewhat, but researchers have found the river basin’s ecosystems are not in good condition. Wetlands such as the Coorong are a natural source of methane. The saltier the water gets, the more environmentally harmful microbes flourish – potentially producing more methane. Vincent_Nguyen The Coorong is out of balance A century ago, regular pulses of fresh water from the Murray flushed nutrients and sediment out of the Coorong, helping maintain habitat for fish, waterbirds and the plants and invertebrates they eat. While other catchments discharge into the Coorong, the Murray is by far the major water source. Over the next decades, growth in water use for farming meant less water in the river. In the 1930s, barrages were built near the river’s mouth to control nearby lake levels and prevent high salinity moving upstream in the face of reduced river flows. Major droughts have added further stress. Under these low-flow conditions, salt and nutrients get more and more concentrated, reaching extreme levels due to South Australia’s high rate of evaporation. In response, microbial communities can trigger harmful algae blooms or create low-oxygen “dead zones”, suffocating river life. The big flush of 2022 In 2022, torrential rain fell in many parts of eastern Australia. Rainfall on the inland side of the Great Dividing Range filled rivers in the Murray-Darling Basin. That year became the largest flood since 1956. We set about recording the changes. As the salinity fell in ultra-salty areas, local microbial communities in the sediment were reshuffled. The numbers of methane-producing microbes fell sharply. This means the floods would have temporarily reduced the Coorong’s greenhouse footprint. Christopher Keneally sampling for microbes in the Coorong in 2022. Tyler Dornan, CC BY When we talk about harmful bacteria, we’re referring to microbes that emit greenhouse gases such as methane, drive the accumulation of toxic sulfide (such as Desulfobacteraceae), or cause algae blooms (Cyanobacteria) that can sicken people, fish and wildlife. During the flood, beneficial microbes from groups such as Halanaerobiaceae and Beggiatoaceae grew rapidly, consuming nutrients such as nitrogen, which is extremely high in the Coorong. This is very useful to prevent algae blooms. Beggiatoaceae bacteria also remove toxic sulfide compounds. The floods also let plants and invertebrates bounce back, flushed out salt and supported a healthier food web. On balance, we found the 2022 flood was positive for the Coorong. It’s as if the Coorong switched packets of chips for carrot sticks – the flood pulse reduced harmful bacteria and encouraged beneficial ones. While the variety of microbes shrank in some areas, those remaining performed key functions helping keep the ecosystem in balance. From 2022 to 2023, consistent high flows let native fish and aquatic plants bounce back, in turn improving feeding grounds for birds and allowing black swans to thrive. A group of black swans cruise the Coorong’s waters. Darcy Whittaker, CC BY Floods aren’t enough When enough water is allowed to flow down the Murray to the Coorong, ecosystems get healthier. But the Coorong has been in poor health for decades. It can’t just rely on rare flood events. Next year, policymakers will review the Murray-Darling Basin Plan, which sets the rules for sharing water in Australia’s largest and most economically important river system. Balancing our needs with those of other species is tricky. But if we neglect the environment, we risk more degradation and biodiversity loss in the Coorong. As the climate changes and rising water demands squeeze the basin, decision-makers must keep the water flowing for wildlife. Christopher Keneally receives funding from the Australian Government Department of Climate Change, Energy, the Environment and Water. His research is affiliated with The University of Adelaide and the Goyder Institute for Water Research. Chris is also a committee member and former president of the Biology Society of South Australia, and a member of the Australian Freshwater Sciences Society.Matt Gibbs receives funding from the Australian Government Department of Climate Change, Energy, the Environment and Water. Sophie Leterme receives funding from the Australian Research Council (ARC). Her research is affiliated with Flinders University, with the ARC Training Centre for Biofilm Research & Innovation, and with the Goyder Institute for Water Research.Justin Brookes does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Suggested Viewing

Join us to forge
a sustainable future

Our team is always growing.
Become a partner, volunteer, sponsor, or intern today.
Let us know how you would like to get involved!

CONTACT US

sign up for our mailing list to stay informed on the latest films and environmental headlines.

Subscribers receive a free day pass for streaming Cinema Verde.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.